0.概述
低功耗智能语音信号处理业务开发流程首先通过在学术领域中的理论算法结合具体场景选取适当的方法,通过matlab/python先实现算法对音频进行处理,如果结果达到理想效果,再编写C语言工程。编写C工程的过程需要先实现浮点工程,然后可以通过matlab或者Python去改变相关变量的浮点精度去验证变量定标的误差和精度是否在可接受范围。定标将会在后面的文章中补充介绍,定标过后再去实现C工程的定点版本。也就是说这个过程我们一共有四个版本的工程需要实现。matlab/python(1浮点、2定点)版本,C工程(3浮点、4定点),由于目前多数低功耗的平台都是要定点C工程的版本,所以这个版本是我们最终需要的版本,而实现这个版本需要经历上述1版本验证算法、2版本定标、3版本辅助定点版本实现这一系列环节,当然如果你要是高手请忽略上述正常人的路子。
而从《低功耗智能语音信号处理》这一标题上看,业务涉及面比较广,需要数学理论、工程经验、还有最近很火的AI相关方法。大体涉及下面几个大块。
1.信号处理环节(降噪、增强语言)—原始信号的预处理是影响训练模型好坏的重要原因
2.模型训练(唤醒、识别)
3.工程实现。(C工程、资源/性能)
习武通过最简单的套路练习基本功和入门是最好的方法。而今天我们就通过一种波束赋形方法,广义旁瓣相消器这一信号处理增强主瓣声音强度,降低旁瓣环境音的算法实现开始我们的入门基础套路练习。
1.背景和概念
单麦克风语音增强只需一路语音信号, 算法复杂度小, 硬件要求低,自1970年代以来已经得到了深入的研究, 提出了谱减法[1,2]、 最小均方误差方法[3,4], 维纳滤波法[5]和子空间方法[6]等等。 这些方法在通常情况下可以获得良好的噪声抑制性能, 然而在非理想条件下, 噪声总是来自于四面八方, 且其与语音信号在时间和频谱上常常是相互交叠的, 再加上回波和混响的影响(如图1.1), 利用单麦克风捕捉相对纯净的语音都是很困难的工作。 若在空间放置多个麦克风, 当语音和周围环境信息被多个麦克风聚集时, 麦克风阵列可以在期望方向上有效地形成一个波束去拾取波束内的信号, 并消除波束外的噪声, 从而达到同时提取声源和抑