二分

二分查找

二分查找法是对一组有序的数字中进行查找,传递相应的数据,进行比较查找到与原数据相同的数据,查找到了返回对应的数组下标,没有找到返回-1;时间复杂度:O(log2n)

如下示例,其中有序数组中, 是按照从小到大的顺序排列的。

int binarySearch(int a[],int left,int right,int x)//传入初值为[0,n-1]
{
	int mid;
	while(left<=right)//若left>right就无法形成闭区间
	{
		mid=(left+right)/2;//mid为left和right的重点
		if(a[mid]==x) return mid;//找到x返回下标
		else if(a[mid]>x)
			{right=mid-1;}//往左区间查找
		else 
			{left=mid+1;}//往右区间查找
	}
	return -1;	
}		

需要注意:如果二分上界超过Int数据范围的一半,那么当欲查询数据在序列靠右的位置时,语句mid=(left+right)/2就会查过int而导致溢出,此时一半使用mid=left+(right-left)/2这条等价语句作为代替。

接下来,如果要求序列中第一个大于等于x的元素的位置L,以及第一个大于x的元素的位置R,这样元素x在序列中的存在区间就是[L,R)
做法类似:

  1. 如果A[max]>=x,说明第一个大等于x的元素的位置一定在mid或mid的左侧,应往左区间查询,令right=mid
  2. 如果A[max]<x,说明第一个大于等于x的元素的位置一定在mid的右侧,应往右区间查询,令left=mid+1

代码实现:

//查找最后一个个比x小的数
int lower_bound(int A[],int size,int x)//传入初值为[0,n]
{
	int L=0,R=size-1;
    int mid,lastpos-1;
    while(left<=right)
    {
        mid=(left+right)/2;
        if(A[mid]>=x) right=mid-1;
        else 
        {lastpos=mid;left=mid+1;}
    }
    return lastpos;//返回夹出来的位置
}

另外,如果想要寻找最后一个满足“条件C”的元素的位置,则可以先求第一个满足“条件!C"的位置,然后该位置-1即可。

需要指出,当区间为左开右闭时,代码如下

//二分区间(left,right]
//初始值必能覆盖所有可能取值,并且left比最小取值小1
int solve(int A[],int left,int right,int x)//传入初值为[-1,n]
{
    int mid;
    while(left<right)
    {
        mid=(left+right)/2;
        if(条件成立) right=mid;
        else left=mid;
    }
    return right;//例如(1,2],返回位置应该为right
}

二分法扩展

计算根号2的近似值,对f(x)=x2,当x在区间[1,2]范围内
① 如果f(mid)>2,说明mid>根号2,应当在[left,right]的范围内继续逼近,故令right=mid
②如果f(mid)<2,说明mid<根号2,应当在[left,right]的范围内继续逼近,故令left=mid

在这里插入图片描述

const double eps=1e-5;
double f(double x)
{ return x*x;}
double calSqrt()
{
    double left=1,right=2,mid;
    while(right-left>=eps)
    {
        mid=(left+right)/2;
        if(f(mid)>2) right=mid;
        else left=mid;
    }
    return mid;
}

快速幂

基于二分思想,因此也常称为二分幂。快速幂基于以下事实:

  1. 如果b是奇数,那么有ab=a*ab-1
  2. 如果b是偶数,那么有ab=ab/2*ab/2

递归写法:

typedef long long LL;
LL binaryPow(LL a,LL b)
{
	if(b==0) return 1;
	if(b%2==1) return a*binaryPow(a,b-1);
	else 
	{LL mul=binaryPow(a,b/2); return mul*mul;}
}

注意:当b%2==0时,不要直接返回binaryPow(a,b/2)*binaryPow(a,b/2),这样复杂度会变为O(2log2)=O(b)

快速幂迭代写法
对ab来说,如果把b写成二进制,那么b就可以写成若干二次幂之和,例如13的二进制是1101,于是3号位,2号位,0号位是1,那么就可以得到13=23+22+20,所以a13=a8+4+1

typedef long long LL;
LL binaryPow(LL a,LL b)
{
    LL ans=1;
    while(b>0)
    {
        if(b & 1)//如果b的二进制末尾为1(也可以写成b % 2)
        {
            ans=ans*a;
        }
        a=a*a;
        b>>=1;//将b的二进制右移1位,即b=b/2
    }
    return ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值