我们来学人工智能 -- deepseek本地可行性分析

deepseek本地可行性分析

题记

  • 英伟达NVIDIA:人工智能(AI)时代的超级“卖铲人”
  • 美帝对华的芯片限制,想必也耳熟能详
  • deepseek造成英伟达的高估值恐慌(目前已回升)
    在这里插入图片描述
  • 别bb了,这些对咱们本地部署有关系吗?
  • 真,一点关系都没有,只是和英伟达的GPU有关
  • 为啥?咱就不能用国产芯片,老子就要和美帝脱钩
  • 这,咱目前真没那实力,打电脑查看下显存吧
    • 你看,这就没咱国产啥事!
    • 大吵大闹不要紧,要不您掏点钱也行…
    • “大佬”握紧口袋里的钱包,沉默了…
      在这里插入图片描述

言归正传

  • 为什么是显卡

    • GPU(Graphics Processing Unit),即图形处理器
    • 最初是为图形渲染和显示而设计的,用于加速计算机中图像的处理
    • 只有少量的控制单元和缓存单元,绝大部分的空间用来堆放运算单元
    • 主要负责完成许多计算密集型任务
    • 而对于人工智能的训练来说,需要处理巨量的数据
    • 如用CPU处理这些数据,需要的算力,成本会大到不可想象
    • 而GPU的特点正好符合这样的需求
  • 为什么是英伟达显卡

    • 为什么?技术创新和市场占有率,咱还说啥
    • 排除中美对立的情绪,事实是,在创始人兼CEO黄仁勋的带领下,英伟达不段创新突破行业天花板,开发出一代又一代颠覆行业的标杆产品
  • 英伟达显卡选择

    • RTX 3070及以上型号的显卡
      • 由于较高的性能和较大的显存,能够支持 DeepSeek 模型的运行
    • RTX 3090有24GB 显存,运行14B、32B规模的模型,能提供较为流畅的运行体验
    • RTX 40 系列或RTX 50系列,性能强劲,支持各种规模的DeepSeek模型
    • 显卡显存较小,如只有 1GB 左右,那么选择 1.5B
    • 如有 8GB 显存,可尝试 7B、8B 模型,满足模型运行需求时,发挥显卡性能
  • dp-r1对应显卡需求

    deepseek-r1:1.5b——1-2G显存
    deepseek-r1:7b——6-8G显存
    deepseek-r1:8b——8G显存
    deepseek-r1:14b——10-12G显存
    deepseek-r1:32b——24G-48显存
    deepseek-r1:70b——96G-128显存
    deepseek-r1:671b——至少496GB
    
  • 好了,很尴尬的是,咱本地是RTX 2060

  • 但从内存上看,或者还是有希望的
    在这里插入图片描述

结尾

  • 人工智能普及化的时代已经到来
  • DP降低训练费用
  • 中国有全产业链
  • 第四次工业革命的爆发将是中国引领
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UCoding

说话好听~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值