题记
- 英伟达NVIDIA:人工智能(AI)时代的超级“卖铲人”
- 美帝对华的芯片限制,想必也耳熟能详
- deepseek造成英伟达的高估值恐慌(目前已回升)

- 别bb了,这些对咱们本地部署有关系吗?
- 真,一点关系都没有,只是和英伟达的GPU有关
- 为啥?咱就不能用国产芯片,老子就要和美帝脱钩
- 这,咱目前真没那实力,打电脑查看下显存吧
- 你看,这就没咱国产啥事!
- 大吵大闹不要紧,要不您掏点钱也行…
- “大佬”握紧口袋里的钱包,沉默了…

言归正传
-
为什么是显卡
- GPU(Graphics Processing Unit),即图形处理器
- 最初是为图形渲染和显示而设计的,用于加速计算机中图像的处理
- 只有少量的控制单元和缓存单元,绝大部分的空间用来堆放运算单元
- 主要负责完成许多计算密集型任务
- 而对于人工智能的训练来说,需要处理巨量的数据
- 如用CPU处理这些数据,需要的算力,成本会大到不可想象
- 而GPU的特点正好符合这样的需求
-
为什么是英伟达显卡
- 为什么?技术创新和市场占有率,咱还说啥
- 排除中美对立的情绪,事实是,在创始人兼CEO黄仁勋的带领下,英伟达不段创新突破行业天花板,开发出一代又一代颠覆行业的标杆产品
-
英伟达显卡选择
- RTX 3070及以上型号的显卡
- 由于较高的性能和较大的显存,能够支持 DeepSeek 模型的运行
- RTX 3090有24GB 显存,运行14B、32B规模的模型,能提供较为流畅的运行体验
- RTX 40 系列或RTX 50系列,性能强劲,支持各种规模的DeepSeek模型
显卡显存较小,如只有 1GB 左右,那么选择 1.5B如有 8GB 显存,可尝试 7B、8B 模型,满足模型运行需求时,发挥显卡性能
- RTX 3070及以上型号的显卡
-
dp-r1对应显卡需求
deepseek-r1:1.5b——1-2G显存 deepseek-r1:7b——6-8G显存 deepseek-r1:8b——8G显存 deepseek-r1:14b——10-12G显存 deepseek-r1:32b——24G-48显存 deepseek-r1:70b——96G-128显存 deepseek-r1:671b——至少496GB -
好了,很尴尬的是,咱本地是RTX 2060
-
但从内存上看,或者还是有希望的

结尾
- 人工智能普及化的时代已经到来
- DP降低训练费用
- 中国有全产业链
- 第四次工业革命的爆发将是中国引领

794

被折叠的 条评论
为什么被折叠?



