一文搞懂DeepSeek - DeepSeek-R1-Zero和DeepSeek-R1

DeepSeek推出了第一代推理模型——DeepSeek-R1-Zero和DeepSeek-R1,通过强化学习激励大型语言模型(LLMs)的推理能力。

1、什么是DeepSeek-R1?

DeepSeek-R1是由深度求索(DeepSeek)公司研发的一款开源推理大模型,旨在提升复杂任务的推理能力,尤其在数学、代码和自然语言推理领域表现突出。该模型采用强化学习技术进行后训练,显著提升了推理性能,并在多个基准测试中与OpenAI的o1模型比肩。

‌1.1、技术特点‌

‌强化学习后训练‌:DeepSeek-R1通过大规模强化学习技术进行后训练,仅需少量标注数据即可显著提升模型性能。这一技术为大型语言模型的训练提供了新思路。

‌完全开源‌:模型采用MIT许可协议,开源了模型权重和多个小型蒸馏模型(如32B和70B),进一步降低了AI应用门槛,赋能开源社区。

‌自主学习能力‌:模型构建了智能训练场,通过动态题目生成、过程验证和协同工作机制,迫使AI像数学家般提炼方法论,甚至将几何证明中的反证法迁移到代码检测中。

1.2、性能表现‌

‌基准测试‌:在数学竞赛(如AIME)、编程竞赛(如Codeforces)等评测中,DeepSeek-R1超越了GPT-4o等模型,并在风格控制类模型分类中与OpenAI o1并列第一。

‌推理成本‌:模型的推理成本仅为0.14美元/百万Token,是行业均价的1/10,显著降低了使用门槛。

1.3、应用场景‌

‌教育‌: DeepSeek-R1已应用于教学助手、办公助手和管理助手等场景,提升教学效率和办公效率。

‌金融与科研‌:模型在研报逻辑校验、科学问题解答等场景中展现了强大的能力,显著降低了项目延期率和人效提升。

‌电商与影视‌:在电商领域,模型降低了服装上新成本,提升了转化率;在影视行业,模型压缩了剧本创作周期。

1.4、行业影响‌

DeepSeek-R1的开源策略和低成本定价使其成为OpenAI的有力竞争者,可能改变AI行业的竞争格局。其广泛应用将进一步推动AI推理能力的提升和智能化转型。

2、什么是DeepSeek-R1-Zero?

‌DeepSeek-R1-Zero‌是DeepSeek团队发布的首代开源推理大型语言模型(LLM),它通过纯强化学习(RL)训练而成,无需无监督微调(SFT)预热,直接通过大规模强化学习获得强大的推理能力‌。

2.1 模型架构和训练方法

DeepSeek-R1-Zero采用了深度Transformer架构,基于DeepSeek-V3-Base模型进行初始化。DeepSeek-V3-Base是一个拥有6710亿参数的混合专家模型,具备强大的通用能力。R1-Zero通过使用V3的Base子模型(一个数十亿参数的密集Transformer)进行初始化,并通过强化学习训练,逐步演化出复杂的推理能力‌。

2.2 核心技术和性能评估

DeepSeek-R1-Zero的核心突破在于证明了纯RL训练的可行性。在数学、编程和推理等多个任务上,R1-Zero的表现接近OpenAI o1水平。例如,在2024年AIME测试中,R1-Zero取得了71.0%的成绩,与o1的79.2%水平相当;在MATH-500基准测试中,R1-Zero以97.3%的成绩略微超越了o1的96.4%;在编程领域,R1-Zero在Codeforces平台上获得了2029的评分,超过了96.3%的人类程序员‌。

2.3 实际应用和开源情况

DeepSeek团队不仅发布了R1-Zero,还公开了所有训练细节,成为首个展示出强化学习飞轮效应并实现持续增长的开源项目。这种公开透明的做法在AI领域具有深远的影响‌

img

我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4

但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!

❗️为什么你必须了解大模型?

1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍

2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰

3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI

(附深度求索BOSS招聘信息)
在这里插入图片描述

⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!
在这里插入图片描述

### DeepSeek-R 个性化知识处理使用指南 #### 安装与配置环境 为了能够顺利运行 DeepSeek-R 进行个性化知识处理,首先需要确保已经安装好必要的软件包以及设置好了工作环境。对于想要本地部署 DeepSeek-R 的用户来说,可以通过命令 `ollama pull deepthink:r1` 来获取所需的资源[^2]。 #### 准备数据集 在准备用于训练的数据集时,建议创建一个新的文件来指定模型加载的路径。例如,在一个名为 `model_config.txt` 文件中可以包含如下内容: ```plaintext FROM ./vicuna-33b.Q4_0.gguf ``` 这段代码指定了模型权重的位置,这对于后续调用非常重要[^3]。 #### 构建自定义应用逻辑 当涉及到具体的开发过程时,《使用 Deepseek Zero Coding Experience 创建类似飞扬的小鸟游戏》一文中提到的方法同样适用于构建其他类型的交互式应用程序,包括那些基于自然语言理解的任务。通过利用平台提供的工具链服务接口,开发者可以根据特定需求定制化实现各种功能模块[^1]。 #### 实现个性化知识处理流程 针对个性化的知识处理任务,通常涉及以下几个方面的工作: - 数据预处理:清洗转换原始输入资料; - 特征提取:识别并抽取有助于提高预测精度的关键属性; - 模型训练:调整参数直至获得满意的性能指标; - 结果解释:将复杂的计算结果转化为易于理解使用的格式; 在这个过程中,DeepSeek-R 提供了一系列高级特性支持上述每一步骤的操作,使得整个流程更加高效便捷。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值