使用Spalding壁面函数求解u+
Spalding壁面函数是一种常用的壁面律,用于在壁面边界层计算中连接粘性底层和对数律区。下面我将介绍如何使用Spalding壁面函数求解无量纲速度u⁺。
Spalding壁面函数公式
Spalding提出的壁面律公式为:
y⁺ = u⁺ + e^(-κB) [e^(κu⁺) - 1 - κu⁺ - (κu⁺)²/2 - (κu⁺)³/6]
其中:
- y⁺ = y uτ/ν (无量纲壁面距离)
- u⁺ = U/uτ (无量纲速度)
- uτ = √(τw/ρ) (摩擦速度)
- κ ≈ 0.41 (von Kármán常数)
- B ≈ 5.0 (经验常数)
求解u⁺的步骤
由于Spalding公式是y⁺关于u⁺的隐式方程,通常需要迭代求解u⁺。以下是求解步骤:
1. 已知量
- 壁面距离 y
- 流体运动粘度 ν
- 壁面剪切应力 τw 或摩擦速度 uτ
- 流体密度 ρ
2. 计算y⁺
y⁺ = y uτ/ν
3. 迭代求解u⁺
可以使用Newton-Raphson方法迭代求解:
a. 初始猜测:
u⁺₀ = y⁺ (粘性底层假设)
b. 迭代公式:
u⁺ₙ₊₁ = u⁺ₙ - f(u⁺ₙ)/f’(u⁺ₙ)
其中:
f(u⁺) = u⁺ + e(-κB)[e(κu⁺) - 1 - κu⁺ - (κu⁺)²/2 - (κu⁺)³/6] - y⁺
f’(u⁺) = 1 + e(-κB)[κe(κu⁺) - κ - (κ)²u⁺ - (κ)³(u⁺)²/2]
c. 迭代直至收敛,例如 |u⁺ₙ₊₁ - u⁺ₙ| < 1e-6
4. 计算实际速度U
U = u⁺ × uτ
示例代码(Python实现)
import numpy as np
def spalding_u_plus(y_plus, kappa=0.41, B=5.0, tol=1e-6, max_iter=100):
"""
使用Spalding壁面函数通过y⁺求解u⁺
"""
# 初始猜测
u_plus = y_plus # 初始假设为粘性底层
for _ in range(max_iter):
# 计算函数值
exp_term = np.exp(kappa * u_plus)
f = (u_plus + np.exp(-kappa * B) *
(exp_term - 1 - kappa * u_plus -
(kappa * u_plus)**2 / 2 -
(kappa * u_plus)**3 / 6) - y_plus)
# 计算导数
df = (1 + np.exp(-kappa * B) *
(kappa * exp_term - kappa -
kappa**2 * u_plus -
kappa**3 * u_plus**2 / 2))
# Newton-Raphson更新
u_plus_new = u_plus - f / df
# 检查收敛
if abs(u_plus_new - u_plus) < tol:
return u_plus_new
u_plus = u_plus_new
return u_plus
# 示例使用
y_plus = 100 # 给定的y⁺值
u_plus = spalding_u_plus(y_plus)
print(f"对于y⁺ = {y_plus}, 计算得到u⁺ = {u_plus}")
注意事项
- Spalding壁面函数适用于整个边界层,包括粘性底层、缓冲层和对数律区。
- 当y⁺很小时(如y⁺ < 5),结果接近u⁺ = y⁺(线性分布)。
- 当y⁺较大时(如y⁺ > 30),结果接近对数律u⁺ = (1/κ) ln(y⁺) + B。
- 在CFD应用中,Spalding壁面函数常用于壁面处理,避免在壁面附近使用过密的网格。
通过这种方法,可以准确地计算给定y⁺对应的u⁺值,从而确定壁面附近的流速分布。
资料
nutUSpaldingWallFunctionFvPatchScalarField.
nutUSpaldingWallFunctionFvPatchScalarField.c
CFD02-y+与壁面函数(Wall Function)