pythongpu运算_Python运算库的CPU/GPU性能评测

本文是一组用于测试Python计算库CPU和GPU性能的基准测试,重点关注哪些高性能后端适合地球物理(有限差分基础)模拟。目前支持的后端包括Numpy、Bohrium、CuPy、Jax、Theano、Numba、PyTorch和Tensorflow。
摘要由CSDN通过智能技术生成

HPC benchmarks for Python

This is a suite of benchmarks to test the sequential CPU and GPU performance of various computational backends with Python frontends.

Specifically, we want to test which high-performance backend is best for geophysical (finite-difference based) simulations.

Contents

FAQ

Why?

The scientific Python ecosystem is thriving, but high-performance computing in Python isn't really a thing yet. We try to change this with our pure Python ocean simulator Veros, but which backend should we use for computations?

Tremendous amounts of time and resources go into the development of Python frontends to high-performance backends, but those are usually tailored towards deep learning. We wanted to see whether we can profit from those advances, by (ab-)using these libraries for geophysical modelling.

Why do the benchmarks look so weird?

These are more or less verbatim copies from Veros (i.e., actual parts of a physical model). Most earth system and climate model components are based on finite-difference schemes to compute derivatives. This can be represented in vectorized form by index shifts of arrays (such as 0.5 * (arr[1:] + arr[:-1]), the first-order derivative of arr at every point). The most common index range is [2:-2], which represents the full domain (the two outermost grid cells are overlap / "ghost cells" that allow us to shift the array across the boundary).

Now, maths is difficult, and numerics are weird. When many different physical quantities (defined on different grids) interact, things get messy very fast.

Why only test sequential CPU performance?

Two reasons:

I was curious to see how good the compilers are without being able to fall back to thread parallelism.

In many physical models, it is pretty straightforward to parallelize the model "by hand" via MPI. Therefore, we are not really dependent on good parallel performance out of the box.

Which backends are currently supported?

(not every backend is available for every benchmark)

What is included in the measurements?

Pure time spent number crunching. Preparing the inputs, copying stuff from and to GPU, compilation time, time it takes to check results etc. are excluded. This is based on the assumption that these things are only done a few times per simulation (i.e., that their cost is amortized during long-running simulations).

How does this compare to a low-level implementation?

As a rule of thumb (from our experience with Veros), the performance of a Fortran implementation is very close to that of the Numba backend, or ~3 times faster than NumPy.

Environment setup

For CPU:

$ conda create -f environment_cpu.yml

$ conda activate pyhpc-bench-cpu

GPU:

$ conda create -f environment_gpu.yml

$ conda activate pyhpc-bench-gpu

If you prefer to install things by hand, just have a look at the environment files to see what you need. You don't need to install all backends; if a module is unavailable, it is skipped automatically.

Usage

Your entrypoint is the script run.py:

$ python run.py --help

Usage: run.py [OPTIONS] BENCHMARK

HPC benchmarks for Python

Usage:

$ python run.py benchmarks/

Examples:

$ taskset -c 0 python run.py benchmarks/equation_of_state

$ python run.py benchmarks/equation_of_state -b numpy -b jax --device

gpu

More information:

https://github.com/dionhaefner/pyhpc-benchmarks

Options:

-s, --size INTEGER Run benchmark for this array size

(repeatable) [default: 4096, 16384, 65536,

262144, 1048576, 4194304]

-b, --backend [numpy|bohrium|cupy|jax|theano|numba|pytorch|tensorflow]

Run benchmark with this backend (repeatable)

[default: run all backends]

-r, --repetitions INTEGER Fixed number of iterations to run for each

size and backend [default: auto-detect]

--burnin INTEGER Number of initial iterations that are

disregarded for final statistics [default:

1]

--device [cpu|gpu|tpu] Run benchmarks on given device where

supported by the backend [default: cpu]

--help Show this message and exit.

Benchmarks are run for all combinations of the chosen sizes (-s) and backends (-b), in random order.

CPU

Some backends refuse to be confined to a single thread, so I recommend you wrap your benchmarks in taskset to set processor affinity to a single core (only works on Linux):

$ conda activate pyhpc-bench-cpu

$ taskset -c 0 python run.py benchmarks/

GPU

Some backends use all available GPUs by default, some don't. If you have multiple GPUs, you can set the one to be used through CUDA_VISIBLE_DEVICES, so keep things fair.

$ conda activate pyhpc-bench-gpu

$ export CUDA_VISIBLE_DEVICES="0"

$ python run.py benchmarks/ --gpu

Some backends are pretty greedy with allocating memory. For large problem sizes, it can be a good idea to only run one backend at a time (and NumPy for reference):

$ conda activate pyhpc-bench-gpu

$ export CUDA_VISIBLE_DEVICES="0"

$ for backend in bohrium jax cupy pytorch tensorflow; do

... python run benchmarks/ --device gpu -b $backend -b numpy -s 10_000_000

... done

Example results

Conclusion

Lessons I learned by assembling these benchmarks: (your mileage may vary)

The performance of Jax seems very competitive, both on GPU and CPU. It is consistently among the top implementations on CPU, and shows the best performance on GPU.

Jax' performance on GPU seems to be quite hardware dependent. Jax performance significantly better (relatively speaking) on a Tesla P100 than a Tesla K80.

Numba is a great choice on CPU if you don't mind writing explicit for loops (which can be more readable than a vectorized implementation), being slightly faster than Jax with little effort.

If you have embarrasingly parallel workloads, speedups of > 1000x are easy to achieve on high-end GPUs.

Tensorflow is not great for applications like ours, since it lacks tools to apply partial updates to tensors (in the sense of tensor[2:-2] = 0.).

Don't bother using Pytorch or Tensorflow on CPU (you won't get much faster than NumPy).

CuPy is nice! Often you don't need to change anything in your NumPy code to have it run on GPU (with decent, but not outstanding performance).

Reaching Fortran performance on CPU with vectorized implementations is hard :)

Contributing

Community contributions are encouraged! Whether you want to donate another benchmark, share your experience, optimize an implementation, or suggest another backend - feel free to ask or open a PR.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值