Mixed effects models 回顾(七

本文回顾了广义线性模型(GLM)和广义加性模型(GAM)在处理计数数据时的应用,包括高斯分布与身份链接、泊松分布、过dispersion问题及其解决方案,如Quasi-Poisson模型和负二项分布模型。文章还探讨了模型验证和选择的方法,并强调了在模型中考虑方差的重要性和修正过dispersion的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R, 11 Statistics

GLM and GAM for Count Data

Introduction

 广义线性模型 (GLM) 以及广义加性模型 (GAM) 的构建包含三步:

(1) 响应变量 Y i Y_i Yi 的分布假设,同时定义 Y i Y_i Yi 的均值 (mean) 以及方差 (variance);

(2) 系统部分的说明,即定义解释变量的函数;

(3) 连接 Y i Y_i Yi 的均值与系统部分。

GLM/GAM with Gaussian distribution and identity link

 在高斯线性回归模型中 (亦叫做 GLM with Gaussian distribution and identity link):

Y i ∼ N ( μ i , σ 2 ) Yi ∼ N(\mu_i, \sigma^2) YiN(μi,σ2)

E ( Y i ) = μ i   a n d   v a r ( Y i ) = σ 2 E(Y_i) = \mu_i  and  var(Y_i) = \sigma^2 E(Yi)=μiandvar(Yi)=σ2

μ i = η ( X i 1 , . . . , X i q ) \mu_i = \eta(X_{i1}, ..., X_{iq}) μi=η(Xi1,...,Xiq)

 组合在一起即为:

E ( Y i ) = η ( X i 1 , . . , X i q ) = α + β 1 × X i 1 + . . . + β q × X i q E(Y_i) = \eta(X_{i1},..,X_{iq}) = \alpha + \beta_1 \times X_{i1} + ... + \beta_q \times X_{iq} E(Yi)=η(Xi1,..,Xiq)=α+β1×Xi1+...+βq×Xiq

 在 GAM with Gaussian distribution中:

η ( X i 1 , . . . , X i q ) = α + f 1 ( X i 1 ) + . . . + f q ( x i q ) \eta(X_{i1},...,X_{iq}) = \alpha + f_1(X_{i1}) + ... + f_q(x_{iq}) ηXi1,...,Xiq)=α+f1(Xi1)+...+fq(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值