Mixed effects models回顾 (一)

本文介绍了在生态学数据分析中,如何利用R语言进行混合效应模型的探索。通过数据探索,检查异常值、共线性和变量关系,并讨论了线性模型的局限性。接着,文章详细讲解了非线性问题的解决方案——广义加性模型(GAM),包括单变量和多变量GAM模型的构建与交互作用的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R, 11 Statistics

数据探索

 在进行数据分析之前,首先要对原始数据进行数据探索 (Data Exploration)。数据探索的目的如下:
 (1) 检查响应变量、解释变量中是否存在异常值 (outliers);
 (2) 检查解释变量间是否存在共线性 (collinearity);
 (3) 考察解释变量与响应变量间的关系 (relationships)。

探索工具 (R language):

Outliers: dotchart()

attach(Nereis) #暂时无法使用管道,故使用attach,一定记得deattach
dotchart(concentration, 
         groups = factor(nutrient),
         xlab = 'Concentrations',
         ylab = 'Nutrients',
         main = 'Cleveland dotplot',
         pch = nutrient) #点的区分
detach(Nereis)

Cleveland dotplot for outliers

上图分成了三份,分别对应三种营养盐类型。图的每一份中的横线代表的是数据在data frame中的顺序(第一个数据对应最低的横线,其在x轴上的位置,对应其浓度);通过Cleveland dotplot,能够查看在不同营养盐类型下的数据分布(中心,离散度)。因此能够通过该图直接判断是否有outliers, 以及 是否满足齐性的前提假设。

Collinearity and relationships: ggpairs() in GGally package

ggpairs(dataframe)

ggpairs() for collinearity and relationships

Collinearity: VIF

待补充。

relationships: 分面

TeethNitrogen %>%
  ggplot() +
  geom_line(aes(x = Age, y = X15N)) +
  facet_wrap(.~Tooth)

在这里插入图片描述

线图的分面展示,展现变量之间的关系&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值