Mixed effects models 回顾(七)

GEE(广义估计方程)用于处理纵向数据,解决GLM和GAMs因独立性假设导致的Type I error问题。它关注总体平均效应,通过依赖结构处理自相关。GEE包括三个步骤:系统组件和链接函数、方差估计和关联结构定义,如无结构、AR-1和交换性相关性模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


A.F. Zuur et al., Mixed Effects Models and Extensions in Ecology with R, 11 Statistics

Generalised Estimation Equations (GEE,广义估计方程)

 当遇到纵向数据 (longitudinal data, LDA) 时,GLM和GAMs的结果可能是失效的,因其假设了响应变量的独立性,冒失地使用会增大 Type I error。本章介绍了Generalised estimation equations (GEE) ,通过引入“依赖结构”处理自相关数据。GEE也被称为“marginal model",这是因为它关注的是总体平均的效应,其响应模式仅取决于协变量,与随机效应无关。

 1. GEE-step 1:Systematic component and link function

E ( Y i s ∣ X i s ) = μ i s   a n d   g ( μ i s ) = α + β 1 × X i s E(Y_{is}|X{is}) = \mu_{is}  and  g(\mu_{is}) = \alpha + \beta_1 \times X_{is} E(YisXis)=μisandg(μis)=α+β1×Xis

 2. GEE-step 2: The variance

v a r ( Y i s ∣ X i s )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值