复习二叉树

本文详细复习了二叉树的概念,包括结点度、叶子结点、二叉树的存储结构及遍历方式,如先序、中序、后序遍历。还深入探讨了堆和赫夫曼树,阐述了赫夫曼树的构建过程及其在数据压缩中的应用。
摘要由CSDN通过智能技术生成

二叉树复习

#情报学/算法

一些不熟悉的基本概念

  • 结点的度(degree):结点拥有的子树的棵数
  • 叶子leaf:度为0
  • 分支结点:除了叶子结点意外的结点
  • 树的度:树中结点的度的最大值
  • 深度为k的二叉树,至多有2^k-1个结点
  • 对于任何一颗二叉树,如果其叶子结点数为N0,度为2的结点树为N2,那么N0=N2+1

总的边数为N,N=N0+N1+N2-1,因为根结点没有边,所以减去一个1 N=1xN1+2xN2,度为一的点有一条边,度为二的点有两条边
两个式子结合就得到N0=N2+1

  • 满二叉树与完全二叉树的区别(最后一层从左到右有结点)

二叉树存储结构

顺序存储

链式存储
[image:C16D9547-99D3-45A4-BFDD-5CFD0B367CD2-887-000004D5991C0262/9a5e52e5de27441c9c5bf062bb6cbb22.png]


二叉树的遍历

先序遍历

  1. 访问根结点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值