扩充二叉树的内路径长度I、外路径长度E和内结点的个数n之间的关系

博客介绍了扩充二叉树的概念,包括外部结点、内部结点、外路径长度和内路径长度的定义。核心结论是外路径长度等于内路径长度加上两倍的内结点个数。通过数学归纳法证明了这个关系,并进一步探讨了这个结论在成功查找和不成功查找平均比较次数中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些概念的定义

  1. 扩充二叉树:在二叉树出现空子树的位置增加空树叶所形成的二叉树
  2. 外部结点:空树叶结点
  3. 内部结点:非空结点
  4. 外路径长度:扩充二叉树中所有外部结点到根结点的路径长度之和
  5. 内路径长度:扩充二叉树中所有内部结点到根节点的路径长度之和

重要结论

外路径长度 E
内路径长度 I
内结点个数 n
E = I + 2n

数学归纳法证明 E = I + 2n

  1. 当n为1时,I = 0; E = 2; 满足 E = I + 2n
  2. 当有n个内结点时设公式成立,则当有 n + 1个内结点时(相对于n个内结点时增加一个外结点) ,令增加了一个内结点后二叉树的高为 h(不包含外结点)、内路径长度 I(n+1) = I(n) + h , 外路径长度E(n+1) = E(n) - h + 2(h+1),又有E(n) = I(n) + 2n, 整理得 E(n+1) - h - 2 = I(n+1) - h + 2n 即有E(n+1) = I(n+1) + 2(n+1)
    证毕

扩展

利用上述结论说明,成功查找的平均比较次数s与不成功的平均比较次数u之间的关系可以表示为 s = ( 1 + 1 n ) × u − 1 s=(1+\frac{1}{n}) \times u-1 s=(1+n1)×

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值