一些概念的定义
- 扩充二叉树:在二叉树出现空子树的位置增加空树叶所形成的二叉树
- 外部结点:空树叶结点
- 内部结点:非空结点
- 外路径长度:扩充二叉树中所有外部结点到根结点的路径长度之和
- 内路径长度:扩充二叉树中所有内部结点到根节点的路径长度之和
重要结论
外路径长度 E
内路径长度 I
内结点个数 n
E = I + 2n
数学归纳法证明 E = I + 2n
- 当n为1时,I = 0; E = 2; 满足 E = I + 2n
- 当有n个内结点时设公式成立,则当有 n + 1个内结点时(相对于n个内结点时增加一个外结点) ,令增加了一个内结点后二叉树的高为 h(不包含外结点)、内路径长度 I(n+1) = I(n) + h , 外路径长度E(n+1) = E(n) - h + 2(h+1),又有E(n) = I(n) + 2n, 整理得 E(n+1) - h - 2 = I(n+1) - h + 2n 即有E(n+1) = I(n+1) + 2(n+1)
证毕
扩展
利用上述结论说明,成功查找的平均比较次数s与不成功的平均比较次数u之间的关系可以表示为 s = ( 1 + 1 n ) × u − 1 s=(1+\frac{1}{n}) \times u-1 s=(1+n1)×