HHKB Programming Contest 2023(AtCoder Beginner Contest 327) Virtual Participation

HHKB Programming Contest 2023(AtCoder Beginner Contest 327)

A a.b(略)

B A^A(略)

题意:

You are given an integer B.If there exists a positive integer A such that A^A = B, print its value; otherwise, output -1.

思路:预处理,然后循环遍历输出

C - Number Place(模拟题)

题意:找出行列以及3x3格子内是否完全出现1-9的数
思路:用map存出现的次数,查找然后模拟。
#include <bits/stdc++.h>
using namespace std;
int mp[20][20];

int main()
{
	for (int i = 1; i <= 9; i++)
	{
		for (int j = 1; j <= 9; j++)
		{
			cin >> mp[i][j];
		}
	}
	int fl1 = 0, fl2 = 0, fl3 = 0;
	for (int i = 1; i <= 9; i++)
	{
		map <int, bool>nummp;
		nummp.clear();
		for (int j = 1; j <= 9; j++)
		{
			nummp[mp[i][j]] = true;
		}
		for (int i = 1; i <= 9; i++)
		{
			if (!nummp.count(i))
			{
				cout << "No" << endl;
				return 0;
			}
		}
	}
	for (int i = 1; i <= 9; i++)
	{
		map <int, bool>nummp;
		nummp.clear();
		for (int j = 1; j <= 9; j++)
		{
			nummp[mp[j][i]] = true;
		}
		//cout << endl << endl;

		for (int i = 1; i <= 9; i++)
		{
			if (!nummp.count(i))
			{
				cout << "No" << endl;
				return 0;
			}
		}


	}

	for (int i = 1; i <= 9; i += 3) //1,1 1,4 1,7 4,1
	{
		for (int j = 1; j <= 9; j += 3)
		{
			//枚举起点
			map <int, bool>nummp;
			nummp.clear();
			for (int k = i; k < i + 3; k++)
			{
				for (int kk = j; kk < j + 3; kk++)
				{
					//cout << mp[k][kk] << ' ';
					nummp[mp[k][kk]] = true;
				}
				//cout << endl;
			}
			for (int i = 1; i <= 9; i++)
			{
				if (!nummp.count(i))
				{
					cout << "No" << endl;
					return 0;
				}
			}
			cout << endl;
		}


	}
	cout << "Yes" << endl;
	return 0;
}

D - Good Tuple Problem

题意:给一个长度为n的数列a,由0和1构成,给两个长度为m的数列b,c。使得a[b[i]]!=a[c[i]]。
思路: 符合二分图的特性,把关系相连可作图:
1.若产生回路:回路的点和为偶数。
2.若无回路:都可以。
用染色法。
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e6+50, M = 1e6+50;

int n, m;
int h[N], e[M], ne[M], idx;
int color[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool dfs(int u, int c)
{
    color[u] = c;

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!color[j])
        {
            if (!dfs(j, 3 - c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}
int aa[N];
int bb[N];
int main()
{
    scanf("%d%d", &n, &m);//n个点,m条变

    int rem = m;
    memset(h, -1, sizeof h);
    while (m -- )
    {
        cin>>aa[m];
        //cout<<aa[m];
    }
    m = rem;
    //cout<<endl;
    while (m -- )
    {
        cin>>bb[m];
        //cout<<bb[m];
    }
    //cout<<endl;
    m = rem;
    while(m--)
    {
        add(aa[m],bb[m]);
        add(bb[m],aa[m]);
    }

    bool flag = true;
    for (int i = 0; i <= N-20; i ++ )
        if (!color[i])
        {
            if (!dfs(i, 1))
            {
                flag = false;
                break;
            }
        }

    if (flag) puts("Yes");
    else puts("No");

    return 0;
}

E - Maximize Rating(DP)

在这里插入图片描述

思路:我们需要剖析在这个式子:
首先 分母为定值,可以预处理。
设dp[k][n],意为当k一定的时候,选n个的方式
剖析分子:
当k=1的时候 :
k=1: 0.9^0 * q1
k=2 : 0.9^1 * q1 + 0.9^0*q2
k=3 : 0.9^2q1 + 0.9^1q2 + 0.9^0+q3
结论:可以发现:dp[k][n] = dp[k-1][n-1] * 0.9+qi;找出最大值即可
#include <bits/stdc++.h>
using namespace std;
int main() 
{
 int n;
    cin>>n;
    vector<double>num(n+1);
    num[1] = 1;//分母
    for(int i=2;i<=n;i++)
    {
        num[i] = num[i-1]*0.9+1;
    }//预处理分母
    vector<double>dp(n+1,-1e23);
    dp[0] = 0;
    vector<double>p(n+1);
    for(int i=1;i<=n;i++)
    {
        cin>>p[i];
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=i;j>0;j--)
        {
            dp[j] = max(dp[j],dp[j-1]*0.9+p[i]);
        }
    }
    double ans = -1e23;
    for(int i=1;i<=n;i++)
    {
        ans = max(ans,dp[i]/num[i]-1200/sqrt(i));
    }
     printf("%.15f", ans);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值