HHKB Programming Contest 2022 Winter(AtCoder Beginner Contest 282) 补题报告

这篇博客深入探讨了图论问题中的二分图染色及其在实际问题中的应用。首先,解释了如何判断一个联通分量是否为二分图,并介绍了在确保没有奇数长度回路的情况下,计算能添加的最大边数。接着,通过实例讲解了树结构中如何通过去掉叶子节点并累积边权值来优化操作。这些算法对于解决竞赛编程题目和实际工程问题具有重要意义。
摘要由CSDN通过智能技术生成

传送门HHKB Programming Contest 2022 Winter(AtCoder Beginner Contest 282)

 

D - Make Bipartite 2

Tutorial

考虑三种情况:

  1. 只有一个联通分量,且该联通分量本身为一个二分图:
    此时染 c 1 c_1 c1 个黑点, c 2 c_2 c2 个白点,,则答案即为 ( c 1 ∗ c 2 − m ) (c_1*c_2-m) (c1c2m) ,表示所有满足二分图的边除去已有的边
  2. 有多个连通分量,且各联通分量都为二分图:
    对其中一个联通分量染色得到所有可能的边 r e s 1 = c 1 ∗ c 2 res_1=c_1*c_2 res1=c1c2,当前联通分量可以和其他联通分量之间连多少条边 r e s 2 = ( c 1 + c 2 ) ∗ ( n − ( c 1 + c 2 ) ) res_2=(c_1+c_2)*(n-(c_1+c_2)) res2=(c1+c2)(n(c1+c2))
    r e s 2 res_2 res2 的求解过程中,各连通分量会对同一条边计算两次,所以我们最终的答案为 a n s = r e s 1 + r e s 2 2 − m ans=res_1+\frac{res_2}2-m ans=res1+2res2m

注意如果任意联通分量中存在非二分图,那么不论怎么加边都无法保证整个图内没有长度为奇数的回路,所以答案是0

Solution

#include <bits/stdc++.h>
#define int long long
#define vi vector<int>
#define pii pair<int, int>
#define inf 0x3f3f3f3f
const int N = 2e5 + 7;
using namespace std;

vector<int> e[N];
int g[N];
int c1, c2;

bool dfs(int u, int col) {
    g[u] = col;
    c1 += (col == 1);
    c2 += (col == 2);
    for (auto i: e[u]) {
        if (g[i] == g[u]) return 0;
        if (!g[i] && !dfs(i, 3 - col)) return 0;
    }
    return 1;
}

signed main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= m; i++) {
        int a, b;
        cin >> a >> b;
        e[a].push_back(b);
        e[b].push_back(a);
    }
    int res1 = 0, res2 = 0;
    for (int i = 1; i <= n; i++)
        if (!g[i]) {
            c1 = c2 = 0;
            if (!dfs(i, 1)) {
                cout << "0\n";
                return 0;
            }
            res1 += c1 * c2;
            res2 += (c1 + c2) * (n - c1 - c2);
        }
    cout << res1 + res2 / 2 - m << '\n';
}

 

E - Choose Two and Eat One

Tutorial

相当于给定一棵树,每次将叶子节点去掉,同时获得叶子与父亲的边权值。
跑一遍最大生成树即可。

Solution

#include <bits/stdc++.h>
#define int long long
#define vi vector<int>
#define pii pair<int, int>
#define inf 0x3f3f3f3f
const int N = 500 + 7;
using namespace std;

struct Node {
    int a, b, w;
} edge[N * N];
int n, m;
int a[N], p[N];

int qpow(int x, int y) {
    int res = 1;
    while (y) {
        if (y & 1) res = res * x % m;
        x = x * x % m;
        y >>= 1;
    }
    return res;
}

int calc(int x, int y) {
    return (qpow(x, y) + qpow(y, x)) % m;
}

int find(int x) {
    if (p[x] == x) return x;
    return p[x] = find(p[x]);
}

signed main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> a[i];
    int t = 0;
    for (int i = 1; i < n; i++)
        for (int j = i + 1; j <= n; j++) edge[++t] = {i, j, calc(a[i], a[j])};
    for (int i = 1; i <= n; i++) p[i] = i;
    sort(edge + 1, edge + t + 1, [](const Node &x, const Node &y) { return x.w > y.w; });
    int ans = 0;
    for (int i = 1; i <= t; i++) {
        int x = find(edge[i].a), y = find(edge[i].b);
        if (x != y) p[x] = y, ans += edge[i].w;
    }
    cout << ans;
}

 

F、G、Ex待补

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值