【ImportError】from torch._C import * # noqa: F403; ImportError: xxx: defined symbol: iJIT_NotifyEvent

当安装好CUDA和CUDNN后,在虚拟环境中导入Torch时遇到iJIT_NotifyEvent错误。问题在于mkl版本与PyTorch版本不匹配。解决方案是确保安装稳定版本的MKL(如2024.0.0),并可能需要降低mkl版本到2024.0以兼容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装好cuda和cudnn后,在虚拟环境下import torch报错:在这里插入图片描述

from torch._C import * # noqa: F403
ImportError: /home/ccszbd/anaconda3/envs/esmfold_env/lib/python3.7/site-packages/torch/lib/libtorch_cpu.so: undefined symbol: iJIT_NotifyEvent

错误基本可以锁定的位置是:undefined symbol: iJIT_NotifyEvent。网上找了一圈,试过了各种方法,包括检查环境变量设置、检查cuda的版本与torch版本是否一致、torch为2.0以上的版本(我的版本是1.12)等等,各种方法都无法解决我的问题。最后,终于让我发现了华点~

解决方式

在安装torch时,可能由于mkl的版本与pytorch的版本不一致导致,或者缺少mkl依赖包,因此需要安装稳定的MKL依赖

pip install mkl==2024.0.0

需要注意的是,版本不一致可能是由于mkl的版本为2024.1导致的,因此需要降低mkl的版本,重新安装2024.0版本

### ImportError: libcupti.so.11.2 cannot open shared object file when importing torch 当遇到`ImportError: libcupti.so.11.2: cannot open shared object file: No such file or directory`错误时,这通常意味着CUDA工具包中的性能分析库(CUPTI)缺失或版本不匹配。该问题常见于安装了特定版本的PyTorch及其依赖项之后。 #### 错误原因解析 此错误表明系统无法找到指定版本的CUPTI共享对象文件(`libcupti.so.11.2`)。可能的原因包括但不限于: - 安装路径不在系统的环境变量中。 - CUDA版本与所需版本不符。 - CUPTI未随CUDA一起正确安装[^1]。 #### 解决方法 为了修复上述错误,可以采取以下措施之一来解决问题: ##### 方法一:更新或安装正确的CUDA版本 确保已安装的CUDA版本支持所需的CUPTI版本。对于`libcupti.so.11.2`而言,应当确认安装的是对应版本的CUDA Toolkit,并且其安装过程顺利完成。可以通过官方渠道下载并按照指南完成安装。 ##### 方法二:设置LD_LIBRARY_PATH环境变量 如果已经拥有合适的CUDA版本,则可能是由于动态链接器未能定位到这些库的位置所引起的。此时可通过修改`LD_LIBRARY_PATH`环境变量指向CUDA库所在位置的方式尝试解决这个问题。例如,在bash shell下执行如下命令: ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64/ ``` 请注意替换路径以反映实际安装情况。 ##### 方法三:重新编译PyTorch 有时,预构建版的PyTorch可能会存在兼容性问题。在这种情况下,考虑从源码自行编译一个适合当前环境配置的新版本也是一种可行的选择。不过这种方法较为复杂,建议仅作为最后手段采用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值