机场出租车问题

机场出租车问题

摘要

        本文以机场出租车接送乘客为研究对象,分别研究机场出租车司机如何决策使得自身利益最大化,机场如何调度出租车接客和乘客上车使得乘车效率最高,以及机场如何分配短途载客的出租车的“优先权”使得出租车的收益尽量均衡等相关问题。本文收集了北京各航班的时刻表和人数,北京机场人流量等数据,综合应用了 BP 神经网络算法,动态规划模型,以及概率模型等数学工具进行建模,并通过程序对每一个问题得到了最优的可行方案。
        针对问题一,我们根据机场乘客数量、出租车排队数量与等待时间等因子与司机决策的关系,建立出租车司机是否选择继续排队的评判模型,通过比较当司机得知航班人数 与自己排队号 的时候,方案(A)与方案(B)之间的总体收益的均值 E 1 E_1 E1 (n,x)和 E 2 E_2 E2 (n,x) ,来确定当x取何范围的时候则选择方案(A),而取哪些范围的时候选择方案(B)。
        针对问题二,我们在问题一的基础上,将城市定位于北京,根据北京出租车的相关数据,分析北京机场人流量变化、飞机航班下达机场的时间等因素对出租车司机决策的影响。对于北京机场,在不同的时间段机场人流量的变化是相对较大的,因此根据所获得的相关数据,综合考虑不同方案的收益,从而可以得到合理的决策。与此同时,我们通过利用 BP 神经网络模型进行多次的学习训练以及测试,可以得到 BP 神经网络值与我们所建的模型值是极其接近的,因此可以确定我们所建模型可信度是较高的。
        对于问题三,我们先通过分析机场车道长度来确定机场“乘车区”所能容纳的出租车辆数。在采用批量放行,以及在并行车道添加人行道以分散人流的方案下,通过设定不同的车辆数,求出最佳的“上车点”(如表 3 所示)。并进一步比较得出,当放行的车量达到最大容量的时候,可以使得总的乘车效率最高。
        对于问题四,我们采用随机模型,假设乘客乘车里程为独立同分布的随机变
量,且服从零到某一最大距离这一区间内的均匀分布。并假设机场管理部门通过设定某一阈值,当出租车首次载客里程小于此阈值时被认定为短途载客并允许返回进行二次载客。模型通过司机收入的方差来衡量收益的均衡,通过求此方差的最小值,来确定此最优的阈值。最后,通过 matlab 程序,取定司机单位里程收入是成本的两倍时,求出此最优的阈值为最远里程的 0.2975

关键字机场人流量、BP 神经网络模型、动态规划、随机模型、最优上车点、最小方差

一、问题重述

1.1 问题的背景

        机场乘车问题与下达机场的乘客、机场管理人员以及出租车司机的利益均有着密切的联系。
        在某时间段抵达的航班数量和“蓄车池”里已有的车辆数是司机可观测到的确定信息。通常司机的决策与其个人的经验判断有关,比如在某个季节与某时间段抵达航班的多少和可能乘客数量的多寡等。如果乘客在下飞机后想“打车”,就要到指定的“乘车区”排队,按先后顺序乘车。机场出租车管理人员负责“分批定量”放行出租车进入“乘车区”,同时安排一定数量的乘客上车。在实际中,还有很多影响出租车司机决策的确定和不确定因素,其关联关系各异,影响效果也不尽相同。
        对于出租车司机而言,在某时间段抵达的航班数量和“蓄车池”里已有的车辆数是司机可观测到的确定信息。如果乘客在下飞机后想“打车”,就要到指定的“乘车区”排队,按先后顺序乘车。司机面临的问题是什么情况下应选择排队载客,什么情况下应放弃排队空载返回市区。是其要决策的问题。
        而对于机场管理人员,如何“分批定量”放行出租车进入“乘车区”,同时如何安排乘客上车,才能保证机场的交通在井然有序的前提下,达到效率最高是其要解决的问题。

1.2 需要解决的问题

        (1) 分析研究与出租车司机决策相关因素的影响机理,综合考虑机场乘客数量的变化规律和出租车司机的收益,建立出租车司机选择决策模型,并给出司机的选择策略。
        (2) 收集国内某一机场及其所在城市出租车的相关数据,给出该机场出租车司机的选择方案,并分析模型的合理性和对相关因素的依赖性。
        (3) 在某些时候,经常会出现出租车排队载客和乘客排队乘车的情况。某机场“乘车区”现有两条并行车道,管理部门应如何设置“上车点”,并合理安排出租车和乘客,在保证车辆和乘客安全的条件下,使得总的乘车效率最高。
        (4) 机场的出租车载客收益与载客的行驶里程有关,乘客的目的地有远有近,出租车司机不能选择乘客和拒载,但允许出租车多次往返载客。管理部门拟对某些短途载客再次返回的出租车给予一定的“优先权”,使得这些出租车的收益尽量均衡,试给出一个可行的“优先”安排方案。

二、问题分析

问题一分析
        通过综合考虑影响机场出租车司机的决策的相关因素,可假定在下达机场的旅客中,需要乘出租车的旅客数服从二项分布。综合考虑出租车排队的队长,等待成本,空载成本等因素,来求出在(A),(B)两个方案下,出租车司机的平均收益关于队长的函数关系,从而建立比较模型,得出在队长为多少的时候应选择哪个方案。
问题二分析
        基于问题一的分析,即是将我们所获取的数据实际去分析我们问题一所建立的模型,从而确定出租车应该采取的方案,并分析其合理性。
问题三分析
        在批量放行一定出租车数量的情况下,上车点的设置会影响到乘客的上车时间,需要选择一个合适的上车点,使得全部出租车在保证车辆和乘客安全的条件下离开机场所用的时间最短。并进一步通过设定不同的车辆数,在最佳“上车点”上车的情况下的求出平均上车时间,来比较得出放行车辆数为多少的时候,乘车效率最高。
问题四分析
        由于乘客到达何地司机和机场工作人员均未知,存在许多不确定因素,因此,我们考虑使用随机模型。根据题意,我们需从宏观的角度出发,为机场管理部门制定方案,给短途载客的司机一定的“优先权”,来实现这些出租车的收益尽量均衡。那么我们首先得认定里程多短才被认定为短途载客,这是我们需要决策的变量。此外,我们还需定义一个指标来衡这些出租车收益的均衡值,在随机模型中,司机收入的方差正是一个合理的指标。由此我们可建立以认定短途载客里程为决策变量,司机收入的方差为目标函数的优化模型。

三、模型假设

为简化问题,做出如下假设
        (1) 机场下达的每位乘客选择是否乘车之间的关系是独立的.
        (2) 机场出租车司机之间的行程时间是独立的
        (3) 出租车司机选择载客地点和返程的地点是固定的
        (4) 乘客到达的目的地与机场的距离为随机变量,且它们之间相互独立同分布,且都服区间 内均匀分布。
        (5) 出租车收费与里程成正比,即不考虑起步价。出租车行驶的成本也与里程成正比。
        (6) 管理部门采用如下策略:设置一个距离 ,当乘客乘车距离小于此距离的时候,出租车司机享有“优先权”,他允许在送完该乘客后返回时插队,此“优先权”对每一个司机最多只享受一次。
        (7) 出租车司机在送完第一个乘客后,如果享有“优先权”,则他会选择空车返回机场二次接送,且都能接到乘客,否则,如果他未享有”优先权”,他将不再返回机场。
        (8) 模型的目标是使得出租车司机获得利润的方差最小。

四、符号说明

符号含义
n单位时间下达机场的人数
b机场出租车的队长
a等待时间成本
t出租车司机等待时间
x乘载单位乘客收益
o乘载单位乘客所需要的车油
t 1 t_1 t1乘载单个乘客所用时间
q乘客乘车的概率
Q乘载单个乘客的总体收益
E(n,x)出租车载客收益均值
k机场“蓄车池”的出租车数量
v机场乘客行走的速度
Δ \Delta Δ t 1 t_1 t1乘客放行李的时间
Δ \Delta Δ t 2 t_2 t2出租车司机反应并制动时间
H机场候车道总长
l每辆出租车车长及两车之间的安全距离
h上车点距离出租车队首的距离
X出租车第一次接送乘客的里程
Y出租车第二次接送乘客的里程
L乘客乘车的最远距离
Z司机总的获利
p出租车载客每一公里的价格
c出租车行驶一公里的成本
d享有”优先权”的最远距离

五、模型建立与求解

5.1 问题一

5.1.1 模型的准备

        假设机场每个人决定是否乘车之间的关系是独立的,且每个人决定是否乘车的概率是固定的,即机场每个人是否乘车的关系服从二项分布。于是将(A),(B)方案分别讨论,取两者的司机的最高收益的期望值进行比较,进而可以得到司机的最优策略。
        二项分布:二项分布是由伯努利提出的概念,指的是重复 n 次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变。

5.1.2 模型的建立与求解

机场出租车司机等待队长为 的车辆接到乘客之前所需要的等待时间为:
T 1 = a b T_1=ab T1=ab出租车司机在机场接到乘客往返所用的时间为:
T 2 = 2 t 1 T_2=2t_1 T2=2t1下达机场人数 n 中有 k 个人决定乘车的概率为:
q ( k ) = ( n k ) q k ( 1 − q ) n − k q(k)={n\choose k}q^k(1-q)^{n-k} q(k)=(kn)qk(1q)nk且有
q ( x ≤ k ) = ∑ i = k n q ( i ) q(x\leq k)=\sum_{i=k}^nq(i) q(xk)=i=knq(i)若出租车司机选择在机场候客且能载到乘客,则此时所获得的最终的平均效益为:
Q 1 = 2 ( b − o ) T 1 + T 2 Q_1=\frac {2(b-o)}{T_1+T_2} Q1=T1+T22(bo)若出租车司机选择在机场等待且未能载到乘客,则此时所获得的平均效益为
Q 2 = 1 x ∑ i = 0 x − 1 b − 2 o a i + T 2 p ( i ) Q_2=\frac{1}{x}\sum_{i=0}^{x-1}\frac {b-2o}{ai+T_2}p(i) Q2=x1i=0x1ai+T2b2op(i)出租车司机选择直接放空返回市区拉客往返所用的时间与选择在机场候车往返的时间相等同为 T 2 T_2 T2,即出租车司机选择直接放空返回市区拉客所能获得的最终平均效益为:
Q 3 = b − 2 c T 2 Q_3=\frac {b-2c}{T_2} Q3=T2b2c于是,我们可以得到出租车司机选择(A)方案时的平均效益均值为:
E 1 ( n , x ) = 1 ( x ≤ k ) [ 2 ( b − c ) T 1 + T 2 ] + 1 x ∑ i = 0 x − 1 b − 2 o a i + T 2 ( n k ) q k ( 1 − q ) n − k E_1(n,x)=1(x\leq k)[\frac {2(b-c)}{T_1+T_2}]+\frac {1}{x}\sum_{i=0}^{x-1}\frac {b-2o}{ai+T_2}{n \choose k}q^k(1-q)^{n-k} E1(n,x)=1(xk)[T1+T22(bc)]+x1i=0x1ai+T2b2o(kn)qk(1q)nk租车司机选择(B)方案时的平均效益均值为:
E 2 ( n , x ) = [ b − 2 o T 2 ] E_2(n,x)=[\frac {b-2o}{T_2}] E2(n,x)=[T2b2o]
由于某时间段抵达的航班数量和“蓄车池”里已有的车辆数是司机可观测到的,因此,当某时刻机场出租车司机队长为 x,下达机场的人数n时,讨论方案(A)与方案(B)收益的差值,即
f ( n , x ) = E 1 ( n , x ) − E 2 ( n , x ) f(n,x)=E_1(n,x)-E_2(n,x) f(n,x)=E1(n,x)E2(n,x)综合考虑下达机场人数和机场出租车队长的关系,则当f(n,x)大于 0 时,则此时机场的出租车司机可选择(A)方案;当 f(n,x)小于0时,则此时机场的出租车司机可选择方案(B)。

5.1.3 模型评价

优点:能够使得利益值直观的表达出来,在出租车供不应求或者供过于求的情况下都能做出最佳的决策;能够将较复杂的问题简化为比较直观的问题,化繁为简,可以给出一个较为准确的结果。
不足:用该模型解决问题一受到的影响因子只考虑了机场的人流量和出租车的数量,对于季节、天气、人为因素并没有全部考虑进去。

5.2 问题二

5.2.1 模型的准备

        BP(back propagation)神经网络模型:BP(back propagation)神经网络是1986 年由Rumelhart 和McClelland 为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。系统解决了多层神经网络隐含层连接权学习问题,人们把采用这种算法进行误差校正的多层前馈网络称为BP网。
        BP 神经网络具有任意复杂的模式分类能力和优良的多维函数映射能力,解决了简单感知器不能解决的异或和一些其他问题。从结构上讲,BP 网络具有输入层、隐藏层和输出层;从本质上讲,BP 算法就是以网络误差平方为目标函数、采用梯度下降法来计算目标函数的最小值。
        我们将城市定位于北京,分析北京机场人流量及出租车分布概况,且根据我们所获取的北京机场出租车的相关数据,且基于问题一的模型,将实际数据与模型结合,得出机场出租车司机的决策。在此基础上,我们运用BP神经网络可验证我们所建立模型的合理性以及相关因子对所建模型的依赖性。
        将我们所获的数据进行处理,得到机场不同时间段客流量以及机场出租车数
量变化如表1、表2所示:

表 1 北京机场相应时间的客流量以及“蓄车池”出租车相关数据

在这里插入图片描述

表 2 北京机场相应时间的客流量以及“蓄车池”出租车相关数据

北京机场相应时间的客流量以及“蓄车池”出租车相关数据

        对于机场每个航班人流量及机场“蓄车池”出租车的数量,由于每个航班对应的飞机可以在同一时间点下达机场,即是同一时间可有多次航班飞机下达机场,于是我们以小时为单位,分析在一个小时内机场的人流量变化对机场出租车司机决策的影响。与此同时,根据问题一所得的方案(A)与方案(B)两者之间的收益差值,由此我们可以得出机场出租车司机应对与任意航班的决策。
机场客流量与机场出租车流量之间的关系

图一 机场客流量与机场出租车流量之间的关系

        首先,直观图一(代码详见附录 2)可以知道,北京机场客流量与机场出租车流量之间呈现同增同减的趋势,即北京机场的“蓄车池”出租车数量在一定程度上随着机场客流量的增加而增加,随着机场客流量的减少而减少。与此同时,观察图二可以知道,北京经常在不同时间段,其人流分布是相差较大的。比如在夜间两点到白天八点其人流量是比较少的,则此时机场对于出租车的需求量不高;而在早上九点到中午十一点,北京机场的人流量呈现一种激增的状态;在中午十二点直至晚上十一点机场的人流量相对平衡。
        因此,对于出租车司机而言,可以以时间段来划分,根据每个时间段机场人流量的变化分布以及机场“蓄车池”出租车数量的变化来做出合理的决策。

5.2.2 模型的建立与求解

        首先,根据我们已有的数据(获取数据的代码详见附录 1),输入变量,创建的神经元如图二所示:
神经元的创建

图二 神经元的创建

然后,根据我们已知数据,输入变量,得到的训练和测试效果如图三所示:
对数据的训练和测试效果图

图三 对数据的训练和测试效果图
        观察图三可知,我们所创建的神经元对数据的测试和训练结果变化趋势基本一致,可以由此得出我们所拟合的结果是比较准确的。

BP 神经网络仿真值

图四 BP 神经网络仿真值

观察图四,我们可以得到 BP 神经网络仿真值分别为 0.91699、0.94453、0.94537、与 0.92671。由此可以得出结论,无论是训练集还是测试集,其输出值和我们所建模型的值是极其接近的。因此我们可以得出结论,我们所建的模型可信度是较高的,即使若已知机场某段时间的人流量和机场“蓄车池”出租车的数量时,我们可以根据我们所建立的模型,综合考虑出租车司机的收益,从而得出合理的决策。

5.2.3 模型评价

优点:所采用的 bp 神经网络模型,通过叠加层数的神经网络能够以任意精度逼近任何非线性连续函数,就可以用来预测选择方案(A)还是方案(B)所获得的利益多,并且在局部的或者部分的神经元收到破坏后对全局的训练结果不会造成很大的影响,具有一定的容错能力。
不足:由于 BP 神经网络算法本质上为梯度下降法,它所要优化的目标函数是非常复杂的,因此 BP 神经网络算法的收敛速度慢,这使得 BP 算法低效。

5.3 问题三

5.3.1 模型的准备

        迭代法:迭代法又称为辗转法,是用计算机解决问题的一种基本方法,为一种不断用变量的旧值递推新值的过程,与直接法相对应,一次性解决问题。迭代法利用计算机运算速度快、适合做重复性操作的特点,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。同时,迭代也是是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程。

5.3.2 模型的建立与求解

        假设机场候车时每个人的行走速度,乘客将行李搬上车的时间以及车子启动
出发的时间是一样的,并且忽略乘客经过人行道到达对面车道的时间。在理想状态下,每辆出租车都能够平稳起步,每辆车的规格和性能都相同。
机场车道车数:
Q = H l Q=\frac {H}{l} Q=lH
上车点距离出租车队首的车辆数:
Q 1 = h l Q_1=\frac{h}{l} Q1=lh
上车点距离出租车队尾的车辆数:
Q 2 = H − h l Q_2=\frac{H-h}{l} Q2=lHh
由此可得到第一辆出租车离开的时间:
t 2 = m a x { x − l v + Δ t 1 + Δ t 2 , t 1 + Δ t 2 } t_2=max \{ \frac {x-l}{v}+\Delta{t_1}+\Delta{t_2},t_1+\Delta{t_2}\} t2=max{vxl+Δt1+Δt2,t1+Δt2}
上车点处的出租车离开的时间:
t Q 1 = m a x { Δ t 1 + Δ t 2 , t Q 1 − 1 + Δ t 2 } t_{Q_1}=max \{ \Delta{t_1}+\Delta{t_2},t_{Q_1-1}+\Delta{t_2}\} tQ1=max{Δt1+Δt2,tQ11+Δt2}
综上所述,第 辆出租车离开的时间:
t k = m a x { k l v + Δ t 1 + Δ t 2 , t k − 1 + Δ t 2 } t_k=max \{ \frac{kl}{v}+\Delta{t_1}+\Delta{t_2},t_{k-1}+\Delta{t_2}\} tk=max{vkl+Δt1+Δt2,tk1+Δt2}
其中,k ∈ \in [ Q 1 Q_1 Q1+1, Q 2 Q_2 Q2]。
那么,要使总的乘车效率达到最高,即要使得机场车尾处第 Q 1 Q_1 Q1辆车所用的时间即 t Q 2 t_{Q_2} tQ2尽可能的小。
        由此,为了使得机场的总体乘车率达到最高,我们对机场的车道答题设计改造如图五所示:
 机场乘车区示意图

图五 机场乘车区示意图
表 3 机场不同车道长度的最佳上车点

机场不同车道长度的最佳上车点
机场不同车道长度的最佳上车点

图六 机场不同车道长度的最佳上车点

        针对不同机场车道距离的设计规格不同,我们根据所建模型与现实生活中机场车道长度联系,给定机场车道的一个合适范围,根据不同长度的机场车道,计算出其最佳上车点。本题讨论机场车道长队在[60,600](包括大小型机场)之间每个指定点的最佳上车点与单批放行出租车数量。
        结合表 3(代码详见附录 5)与图六(代码详见附录 3),当机场车道长度为 156m 时,此时机场车道最佳上车点可设置在 56 , 单形车道车辆数为 26;当机场车道长度为 408 时,此时最佳上车点可设置在 138 处,单形车道车辆数为 68;当机场车道长度为 564 时,此时最佳上车点可设置在 186 处,单形车道车辆数为 93。

5.3.3 模型评价

优点:动态规划模型反映了动态过程演变的联系和特征,在计算时可以利用实际知识和经验提高求解效率,利用该模型能够得到全局最优解,在求解的过程中可以不必重复计算某些结果。
不足:没有统一的标准模型,数值方法求解时存在维数灾。用动态规划来求解的过程中,所消耗的空间大,当所給出范围很大时,堆栈中很可能并不满足所需要的空间大小。

5.4 问题四

5.4.1 模型的准备

        随机模型:随机模型亦称“非确定的、概率的模型”,是按随机变量建立的模型。其特点是; 模型参数、模拟对象发挥功能的条件和状态特征是随机变量,它们的联系方式也是随机的,或者原始信息以随机变量来表示。所谓随机变量就是具有随机性质的变量。如果希望如实反映系统中随机变量的因果关系时,就要
用随机模型。
        由于乘客到达何地司机和机场工作人员均未知,存在许多不确定因素,因此,我们考虑使用随机模型,相对于车辆行驶的时间,排队等候的时间可忽略不计,即不考虑时间成本。

5.4.2 模型建立与求解

引入以下记号:

符号含义
X出租车第一次接送乘客的里程
Y出租车第二次接送乘客的里程
Z乘客乘车的最远距离
Z司机总的获利
p出租车载客每一公里的价格
c出租车行驶一公里的成本
d享有”优先权”的最远距离

根据模型假设,出租车司机的获利可以表示如下
Z = { ( p − c ) X , X > d ( p − 2 c ) X + ( p − c ) Y , x ≤ d Z= \left\{ \begin{aligned} (p-c)X,X>d\\ (p-2c)X+(p-c)Y, x\leq d \end{aligned} \right. Z={(pc)X,X>d(p2c)X+(pc)Y,xd
目标函数为
f ( d ) = D Z f(d)=DZ f(d)=DZ
要求
m i n f ( d ) min \quad f(d) minf(d)
模型求解:
首先,将Z改写为
Z = ( p − c ) X − c X 1 x ≤ d + ( p − c ) Y 1 x ≤ d Z=(p-c)X-c{X_1}_{x\leq d}+(p-c){Y_1}_{x\leq d} Z=(pc)XcX1xd+(pc)Y1xd
1 x ≤ d = { 0 , X > d 1 , x ≤ d 1_{x\leq d}=\left\{ \begin{aligned} 0,X>d\\ 1, x\leq d \end{aligned} \right. 1xd={0,X>d1,xd
表示集合{ x ≤ d x\leq d xd}上的示性函数.
利用 与Y独立同分布,有
E [ Z ] = ( p − c ) E [ X ] − c E [ x 1 x ≤ d ] + ( p − c ) E [ Y ] P ( x ≤ d ) = ( p − c ) L 2 − c d 2 2 L + ( p − c ) L 2 d L \begin{aligned}E[Z]&= (p-c)E[X]-cE[{x_1}_{x\leq d}]+(p-c)E[Y] P(x\leq d)\\ &=(p-c)\frac{L}{2}-c\frac{d^2}{2L}+(p-c)\frac{L}{2}\frac{d}{L}\end{aligned} E[Z]=(pc)E[X]cE[x1xd]+(pc)E[Y]P(xd)=(pc)2Lc2Ld2+(pc)2LLd
E [ Z 2 ] = ( p − c ) 2 E [ X 2 ] + c 2 E [ X 2 1 x ≤ d ] + ( p − c ) 2 E [ Y 2 ] P ( x ≤ d ) − 2 ( p − c ) c E [ X 2 1 ( x ≤ d ) ] − 2 ( p − c ) 2 E Y E [ X 1 x ≤ d ] − 2 c ( p − c ) E Y E [ X 1 x ≤ d ] = ( p − c ) 2 L 2 3 + c 2 d 3 3 L + ( p − c ) 2 L 3 3 d L − 2 ( p − c ) c d 3 3 L + 2 ( p − c ) 2 L 2 d 2 2 L − 2 c ( p − c ) L 2 d 2 2 L \begin{aligned}E[Z^2]&= (p-c)^2E[X^2]+c^2E[X^21_{x\leq d}]+(p-c)^2E[Y^2]P(x\leq d)-2(p-c)cE[X^21(x\leq d)]-2(p-c)^2EYE[X1_{x\leq d}]-2c(p-c)EYE[X1_{x\leq d}]\\ &=(p-c)^2\frac{L^2}{3}+c^2\frac{d^3}{3L}+(p-c)^2\frac{L^3}{3} \frac{d}{L}-2(p-c)c\frac{d^3}{3L}+2(p-c)^2\frac{L}{2}\frac{d^2}{2L}-2c(p-c)\frac{L}{2}\frac{d^2}{2L} \end{aligned} E[Z2]=(pc)2E[X2]+c2E[X21xd]+(pc)2E[Y2]P(xd)2(pc)cE[X21(xd)]2(pc)2EYE[X1xd]2c(pc)EYE[X1xd]=(pc)23L2+c23Ld3+(pc)23L3Ld2(pc)c3Ld3+2(pc)22L2Ld22c(pc)2L2Ld2
从而,
f ( d ) = D Z = E [ Z 2 ] − { E [ Z ] } 2 = ( p − c ) 2 L 2 3 + c 2 d 3 3 L + ( p − c ) 2 L 2 3 d L − 2 ( p − c ) c d 3 3 L + 2 ( p − c ) 2 L 2 d 2 2 L − 2 c ( p − c ) L 2 d 2 2 L − [ ( p − c ) L 2 − c d 2 2 L + ( p − c ) L 2 d L ] 2 = − 4 c 2 4 L 2 d 4 + [ c 2 3 L − ( p − c ) c 6 L ] d 3 + ( p − c ) 2 4 d 2 − ( p − c ) 2 L 6 d + ( p − c ) 2 L 2 12 \begin{aligned} f(d)&=DZ\\ &=E[Z^2]-\{E[Z]\}^2\\ &=(p-c)^2\frac{L^2}{3}+c^2\frac{d^3}{3L}+(p-c)^2\frac{L^2}{3}\frac{d}{L}-2(p-c)c\frac{d^3}{3L}+2(p-c)^2\frac{L}{2}\frac{d^2}{2L}-2c(p-c)\frac{L}{2}\frac{d^2}{2L}-[(p-c)\frac{L}{2}-c\frac{d^2}{2L}+(p-c)\frac{L}{2}\frac{d}{L}]^2\\ &=-4\frac{c^2}{4L^2}d^4+[\frac{c^2}{3L}-\frac{(p-c)c}{6L}]d^3+\frac{(p-c)^2}{4}d^2-\frac{(p-c)^2L}{6}d+(p-c)^2\frac{L^2}{12} \end{aligned} f(d)=DZ=E[Z2]{E[Z]}2=(pc)23L2+c23Ld3+(pc)23L2Ld2(pc)c3Ld3+2(pc)22L2Ld22c(pc)2L2Ld2[(pc)2Lc2Ld2+(pc)2LLd]2=44L2c2d4+[3Lc26L(pc)c]d3+4(pc)2d26(pc)2Ld+(pc)212L2
我们只需求出 与 的比例,故设
x = d L x=\frac{d}{L} x=Ld
g ( x ) = f ( d ) L 2 g(x)=\frac{f(d)}{L^2} g(x)=L2f(d)
则有
g ( x ) = − c 2 4 x 4 + [ c 2 3 − ( p − c ) c 6 ] x 3 + ( p − c ) 2 4 x 2 − ( p − c ) 2 6 x + ( p − c ) 2 12 g(x)=-\frac{c^2}{4}x^4+[\frac{c^2}{3}-\frac{(p-c)c}{6}]x^3+\frac {(p-c)^2}{4}x^2-\frac {(p-c)^2}{6}x+\frac {(p-c)^2}{12} g(x)=4c2x4+[3c26(pc)c]x3+4(pc)2x26(pc)2x+12(pc)2

这是关于 的四次函数,代入数值后可通过程序(见附录)求出其最小值,例如在
考虑每公里价格是成本的两倍时,可算出最优的“优先权”距离为最远距离的
0.2975(如图七所示,代码详见附录 4)
方差曲线图

图七 方差曲线图

5.4.3 模型的评价

优点:模型通过引入随机变量来刻画乘客乘车里程的不确定性,通过出租车获利的方差来作为出租车收益均衡的标准,对客观实际作了较为合理的简化,很好地描述了大量机场出租车运行时的统计规律。
不足:仍有许多不确定因素未被考虑,例如出租车等待时间,出租车返回机场时接客的收入等。

  • 13
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值