大家好,我是微学AI, 今天给大家介绍一下深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正,我们在生活中会看到一些拍摄扭曲的图片,我们在通过OCR识别的时候,因为扭曲的厉害,而无法识别,我们需要对图片进行处理。
文件图像的变形有扭曲、折叠、褶皱、透视等多种情况,解决方案可以分为参数化方法和非参数化方法。参数化方法构建只能处理简单场景的低维度的数学模型。在非参数方法中,通常需要创建一对数据集。
假设文档变形用低维参数化模型表示,不能处理失真情况,不能处理折叠变形。参数模型主要考虑参数。
1、旋转矢量r和平移矢量t的三维空间中的页面
2、指定页面表面的两个曲率alpha和beta,并将行文本视为一条曲线。这里假设扭曲后成为三次样条线,由两个系数a和b控制。
3、页面上n个水平跨度的垂直偏移。垂直偏移是分割的每行之间的距离。
4.对于每个跨度,水平跨度上m个点的水平偏移。水平偏移是每条直线上设置的点之间的距离。
我们可以利用python,安装第三方库:
pip install page-dewarp
外部调用from page_dewarp import __main__