深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正

本文介绍了深度学习实战12(进阶版),利用Dewarp技术进行文本扭曲矫正。通过参数化和非参数化方法解决图像变形问题,详细解释了Dewarp的工作原理,并提供了Python实现的代码示例。通过调用特定库,可以对扭曲的文本图片进行处理,提高OCR识别效果。文章还列举了系列项目的其他实战内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI, 今天给大家介绍一下深度学习实战12(进阶版)-利用Dewarp实现文本扭曲矫正,我们在生活中会看到一些拍摄扭曲的图片,我们在通过OCR识别的时候,因为扭曲的厉害,而无法识别,我们需要对图片进行处理。

文件图像的变形有扭曲、折叠、褶皱、透视等多种情况,解决方案可以分为参数化方法和非参数化方法。参数化方法构建只能处理简单场景的低维度的数学模型。在非参数方法中,通常需要创建一对数据集。

假设文档变形用低维参数化模型表示,不能处理失真情况,不能处理折叠变形。参数模型主要考虑参数。
1、旋转矢量r和平移矢量t的三维空间中的页面
2、指定页面表面的两个曲率alpha和beta,并将行文本视为一条曲线。这里假设扭曲后成为三次样条线,由两个系数a和b控制。
3、页面上n个水平跨度的垂直偏移。垂直偏移是分割的每行之间的距离。
4.对于每个跨度,水平跨度上m个点的水平偏移。水平偏移是每条直线上设置的点之间的距离。

我们可以利用python,安装第三方库:

pip install page-dewarp

外部调用from page_dewarp import __main__

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值