基于复杂的商业和政策信息构建GraphRAG,并结合通义千问大模型进行问答的应用场景

大家好,我是微学AI,今天给大家介绍一下,基于复杂的商业和政策信息构建GraphRAG,并结合通义千问大模型进行问答的应用场景。
在这里插入图片描述

1. 项目概述

1.1 项目背景与目标

随着人工智能技术的飞速发展,企业面临着海量非结构化数据的处理与分析挑战。商业和政策描述文本作为重要的信息来源,蕴含着丰富的知识和价值。然而,这些文本数据往往难以直接利用,需要通过有效的技术手段将其转化为结构化的知识图谱,进而为智能问答等应用提供支持。微软的 GraphRAG 技术为这一问题提供了创新的解决方案,它结合了知识图谱和大型语言模型的优势,能够从非结构化文本中提取有价值的信息,并构建出具有语义关联的知识图谱,从而实现高效的问答和知识推理。

本项目的目标是利用 GraphRAG 技术,从商业和政策描述文本中提取三元组信息,将其存储到 Neo4j 图数据库中构建知识图谱,并对接通义千问大模型的 API 接口,实现基于 GraphRAG 的智能问答系统。通过这一项目的实施,旨在探索 GraphRAG 在实际应用场景中的有效性,提升企业对非结构化数据的处理能力,为决策提供更精准的知识支持。

1.2 GraphRAG 技术原理

GraphRAG(Retrieval-Augmented Generation with Graphs)是一种结合了知识图谱和大型语言模型(LLM)的检索增强生成技术。其核心原理是通过构建知识图谱来存储和组织非结构化文本中的知识,并利用 LLM 的推理能力生成准确的问答内容。具体来说,GraphRAG 的工作流程如下:

  1. 文本预处理与三元组提取:首先对输入的商业和政策描述文本进行预处理,包括分词、词性标注等自然语言处理步骤。然后利用提取算法从文本中识别出实体、关系和属性,并将其表示为三元组(主体、谓语、宾语)的形式。例如,从文本“公司 A 与公司 B 签订了合作协议”中提取出三元组(公司 A,签订合作协议,公司 B)。
  2. 知识图谱构建:将提取出的三元组存储到 Neo4j 图数据库中,构建出知识图谱。Neo4j 作为一种高性能的图数据库,能够高效地存储和管理图结构数据,支持复杂的图查询和分析操作。知识图谱中的节点表示实体,边表示实体之间的关系,通过这种方式可以直观地展示知识之间的关联。
  3. 查询处理与图匹配:当用户提出问题时,系统首先对问题进行分析,提取出关键的查询实体和关系,并将其转化为查询图。然后将查询图与知识图谱进行匹配,通过图匹配算法找到与查询图最相似的子图,从而确定与问题相关的知识片段。
  4. 信息检索与上下文生成:根据图匹配的结果,从知识图谱中检索出与问题相关的文档或文本片段,并将其作为上下文信息传递给 LLM。这些上下文信息为 LLM 提供了丰富的知识背景,有助于其生成更准确、更相关的回答。
  5. LLM 生成回答:LLM 接收到上下文信息后,结合自身的语言生成能力,生成针对用户问题的回答。由于 LLM 能够理解和推理复杂的语言逻辑,因此可以生成连贯、准确的自然语言回答,满足用户的查询需求。

通过上述原理,GraphRAG 实现了从非结构化文本到结构化知识图谱的转化,并利用知识图谱和 LLM 的结合,为用户提供高效、准确的问答服务。这一技术在处理复杂查询、减少幻觉生成以及提高知识表示能力等方面具有显著优势,为人工智能应用的发展提供了新的思路和方法。

项目的时序图

User QA_System GraphRAG Neo4j Qwen 提出问题 查询知识图谱 执行查询 返回知识片段 提供知识片段 生成上下文信息 调用通义千问 API 返回回答 提供回答 User QA_System GraphRAG Neo4j Qwen

2. 环境搭建与数据准备

2.1 安装 Python 环境

为了确保 GraphRAG 项目的顺利运行,首先需要安装合适的 Python 环境。推荐使用 Python 3.10 或 3.11,因为这些版本在兼容性和性能上表现良好。可以通过以下命令安装 Python:

# 在 macOS 上使用 pyenv 安装 Python
brew install pyenv
pyenv install 3.11.9
pyenv global 3.11.9

安装完成后,可以通过以下命令验证 Python 版本:

python --version

确保输出为 Python 3.11.9 或其他指定版本。

2.2 安装 GraphRAG 及相关依赖

接下来,需要安装 GraphRAG 及其相关依赖。可以通过以下步骤完成安装:

  1. 克隆 GraphRAG 源码
    git clone https://github.com/microsoft/graphrag.git
    cd graphrag
    
  2. 安装 Poetry
    Poetry 是一个现代的 Python 包管理工具,用于依赖管理和项目构建。可以通过以下命令安装 Poetry:
    # 在 macOS 上使用 Homebrew 安装 Poetry
    brew install poetry
    
  3. 配置 Poetry 环境
    确保 Poetry 使用当前的 Python 版本:
    poetry env use $(pyenv which python)
    
  4. 安装依赖
    进入项目目录后,使用 Poetry 安装项目依赖:
    poetry install
    poetry shell
    
  5. 安装 Neo4j 图数据库
    Neo4j 是一个高性能的图数据库,用于存储和管理知识图谱。可以通过 Docker 快速安装 Neo4j:
    docker run --name neo4j -d -p 7474:7474 -p 7687:7687 neo4j:latest
    
    安装完成后,可以通过浏览器访问 http://localhost:7474 来管理 Neo4j 数据库。

2.3 准备商业和政策描述文本数据

为了从商业和政策描述文本中提取三元组信息,需要准备相关的文本数据。这些数据可以是 PDF 文件、TXT 文件或其他格式的文档。以下是准备数据的步骤:

  1. 创建数据目录
    在项目根目录下创建一个 data 文件夹,用于存放输入的文本数据:
    mkdir data
    
  2. 准备文本文件
    将商业和政策描述文本文件放入 data 文件夹中。例如,可以准备以下文件:
    • policy.txt:包含政策描述的文本文件。
    • business.txt:包含商业描述的文本文件。
  3. 验证数据
    确保文本文件的内容是 UTF-8 编码,可以通过以下命令进行验证和转换:
    file -i data/policy.txt
    file -i data/business.txt
    
    如果文件编码不是 UTF-8,可以使用以下命令进行转换:
    iconv -f GBK -t UTF-8 data/policy.txt -o data/policy_utf8.txt
    iconv -f GBK -t UTF-8 data/business.txt -o data/business_utf8.txt
    

通过以上步骤,完成了 Python 环境的搭建、GraphRAG 的安装及相关依赖的配置,同时准备好了商业和政策描述文本数据,为后续的三元组提取和知识图谱构建奠定了基础。

3. 三元组提取与知识图谱构建

3.1 使用 GraphRAG 提取三元组

为了从商业和政策描述文本中提取三元组信息,我们将利用 GraphRAG 的强大功能。GraphRAG 通过其内置的自然语言处理(NLP)模块,能够高效地从非结构化文本中识别出实体、关系和属性,并将其表示为三元组的形式。以下是实现这一过程的详细步骤和代码示例。

3.1.1 初始化 GraphRAG 环境

首先,确保已经按照第 2 章的步骤完成了环境搭建和数据准备。接下来,我们需要初始化 GraphRAG 项目,并配置相关参数。

import os
from graphrag import GraphRAG

# 设置项目根目录
root_dir = "./graphrag_project"
os.makedirs(root_dir, exist_ok=True)

# 初始化 GraphRAG 项目
graphrag = GraphRAG(root_dir=root_dir)

# 配置 GraphRAG 参数
graphrag.config.llm.model = "通义千问"  # 使用通义千问大模型
graphrag.config.storage.type = "file"
graphrag.config.storage.base_dir = root_dir

3.1.2 读取文本数据

接下来,读取准备好的商业和政策描述文本数据,并将其传递给 GraphRAG 进行处理。

# 读取文本文件
def read_text_file(file_path):
    with open(file_path, "r", encoding="utf-8") as file:
        return file.read()

# 准备文本数据
policy_text = read_text_file("./data/policy_utf8.txt")
business_text = read_text_file("./data/business_utf8.txt")

# 将文本数据传递给 GraphRAG
graphrag.add_text(policy_text, "policy")
graphrag.add_text(business_text, "business")

3.1.3 提取三元组

使用 GraphRAG 的 NLP 模块从文本中提取三元组信息。GraphRAG 会自动识别文本中的实体、关系和属性,并将其表示为三元组的形式。

# 提取三元组
triplets = graphrag.extract_triplets()

# 打印提取的三元组
for triplet in triplets:
    print(triplet)

3.1.4 示例输出

假设输入的文本为:

政策:政府鼓励企业加大研发投入,以推动科技创新。
商业:公司 A 与公司 B 签订了合作协议。

提取的三元组可能如下:

(政府, 鼓励, 企业)
(企业, 加大, 研发投入)
(研发投入, 推动, 科技创新)
(公司 A, 签订合作协议, 公司 B)

3.2 将三元组存入 Neo4j 构建知识图谱

提取出的三元组信息需要存储到 Neo4j 图数据库中,以构建知识图谱。Neo4j 提供了强大的图数据存储和查询功能,能够高效地管理知识图谱中的节点和关系。

3.2.1 连接 Neo4j 数据库

首先,需要连接到 Neo4j 数据库。确保 Neo4j 已经按照第 2 章的步骤安装并运行。

from py2neo import Graph

# 连接到 Neo4j 数据库
neo4j_graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

3.2.2 创建知识图谱

将提取的三元组信息存储到 Neo4j 中,构建知识图谱。每个三元组的主体和宾语作为节点,关系作为边。

def create_knowledge_graph(triplets, neo4j_graph):
    for triplet in triplets:
        subject, predicate, object = triplet
        # 创建主体节点
        subject_node = neo4j_graph.nodes.match("Entity", name=subject).first()
        if not subject_node:
            subject_node = neo4j_graph.nodes.create(name=subject, type="Entity")
        
        # 创建宾语节点
        object_node = neo4j_graph.nodes.match("Entity", name=object).first()
        if not object_node:
            object_node = neo4j_graph.nodes.create(name=object, type="Entity")
        
        # 创建关系边
        relation = neo4j_graph.relationships.match((subject_node, object_node), r_type=predicate).first()
        if not relation:
            relation = neo4j_graph.relationships.create(subject_node, predicate, object_node)

# 将三元组存入 Neo4j 构建知识图谱
create_knowledge_graph(triplets, neo4j_graph)

3.2.3 验证知识图谱

通过查询 Neo4j 数据库,验证知识图谱是否正确构建。

# 查询知识图谱中的节点和关系
query = """
MATCH (n)-[r]->(m)
RETURN n.name AS subject, type(r) AS predicate, m.name AS object
"""
results = neo4j_graph.run(query).data()

# 打印查询结果
for result in results:
    print(f"{result['subject']} - {result['predicate']} - {result['object']}")

3.2.4 示例输出

假设输入的三元组为:

(政府, 鼓励, 企业)
(企业, 加大, 研发投入)
(研发投入, 推动, 科技创新)
(公司 A, 签订合作协议, 公司 B)

查询结果可能如下:

政府 - 鼓励 - 企业
企业 - 加大 - 研发投入
研发投入 - 推动 - 科技创新
公司 A - 签订合作协议 - 公司 B

通过上述步骤,我们成功地从商业和政策描述文本中提取了三元组信息,并将其存储到 Neo4j 图数据库中构建了知识图谱。这为后续基于 GraphRAG 的智能问答系统提供了坚实的基础。

4. 对接通义千问 API 实现问答

4.1 调用通义千问 API 接口

为了实现基于 GraphRAG 的智能问答系统,需要对接通义千问大模型的 API 接口。通义千问提供了强大的语言生成能力,能够根据输入的问题生成准确、连贯的回答。以下是调用通义千问 API 的具体步骤和代码示例。

4.1.1 获取通义千问 API 密钥

在使用通义千问 API 之前,需要先获取 API 密钥。通义千问 API 密钥可以通过其官方网站或相关平台申请。申请成功后,将获得一个 API 密钥,用于身份验证和访问权限控制。

4.1.2 安装通义千问 Python SDK

为了方便调用通义千问 API,可以安装其 Python SDK。通过 SDK,可以更便捷地发送请求和处理响应。安装命令如下:

pip install qwen-sdk

4.1.3 调用通义千问 API

使用通义千问 Python SDK 调用 API 接口,发送问题并获取回答。以下是代码示例:


from typing import Tuple
import dashscope

class Qwen:
    def __init__(self, api_key: str, qwen_model: str):
        self.api_key = api_key
        self.qwen_model = qwen_model

    def llm_qa(self, message: str) -> Tuple[str]:
        response = dashscope.Generation.call(
            model=self.qwen_model,  # 确保 qwen_model 已定义
            api_key=self.api_key,
            messages=message,
            temperature=0.4,
            stream=False,
            result_format='message',  # 设置结果为 "message" 格式。
        )
        response = response["output"]["choices"][0]["message"]["content"]

        return response

# 初始化通义千问客户端
qwen = Qwen(api_key="your_api_key", qwen_model="qwen-plus")

# 定义调用通义千问 API 的函数
def call_qwen_api(prompt):
    response = qwen.llm_qa(prompt)
    return response

# 测试调用通义千问 API
question = "请介绍一下人工智能的发展历程。"
answer = call_qwen_api(question)
print("通义千问回答:", answer)

4.1.4 示例输出

假设输入的问题为“请介绍一下人工智能的发展历程。”,通义千问 API 返回的回答可能如下:

通义千问回答:人工智能的发展历程可以追溯到 20 世纪 40 年代。1943 年,沃伦·麦卡洛克和沃尔特·皮茨提出了人工神经元模型,为人工智能的发展奠定了基础。1956 年,约翰·麦卡锡在达特茅斯会议上首次提出了“人工智能”这一术语,标志着人工智能学科的正式诞生。此后,人工智能经历了多个发展阶段,包括推理期、知识期、机器学习期和深度学习期。近年来,随着计算能力的提升和大数据技术的发展,人工智能在图像识别、语音识别、自然语言处理等领域取得了显著的突破,广泛应用于医疗、金融、交通等多个行业。

4.2 基于 GraphRAG 实现问答逻辑

在成功对接通义千问 API 的基础上,结合 GraphRAG 技术实现智能问答逻辑。GraphRAG 通过知识图谱和大型语言模型的结合,能够更好地理解和生成与知识图谱相关的回答。以下是基于 GraphRAG 实现问答逻辑的详细步骤和代码示例。

4.2.1 查询知识图谱

当用户提出问题时,首先需要从知识图谱中检索与问题相关的知识片段。通过将问题转化为查询图,并与知识图谱进行匹配,找到与问题相关的节点和关系。

# 定义查询知识图谱的函数
def query_knowledge_graph(question, neo4j_graph):
    # 将问题转化为查询图(这里简化为关键词匹配)
    keywords = question.split()
    
    # 构造查询语句
    query = """
    MATCH (n)-[r]->(m)
    WHERE n.name IN $keywords OR m.name IN $keywords
    RETURN n.name AS subject, type(r) AS predicate, m.name AS object
    """
    
    # 执行查询
    results = neo4j_graph.run(query, keywords=keywords).data()
    
    # 提取查询结果中的知识片段
    knowledge_fragments = []
    for result in results:
        knowledge_fragments.append(f"{result['subject']} - {result['predicate']} - {result['object']}")
    
    return knowledge_fragments

# 测试查询知识图谱
question = "政府如何推动科技创新?"
knowledge_fragments = query_knowledge_graph(question, neo4j_graph)
print("知识图谱中的相关知识片段:", knowledge_fragments)

4.2.2 生成上下文信息

根据从知识图谱中检索到的知识片段,生成用于传递给通义千问大模型的上下文信息。上下文信息为大模型提供了丰富的知识背景,有助于生成更准确、更相关的回答。

# 定义生成上下文信息的函数
def generate_context(knowledge_fragments):
    context = "知识图谱中的相关知识片段:\n" + "\n".join(knowledge_fragments)
    return context

# 生成上下文信息
context = generate_context(knowledge_fragments)
print("生成的上下文信息:", context)

4.2.3 调用通义千问 API 生成回答

将生成的上下文信息传递给通义千问大模型,调用 API 接口生成回答。

# 调用通义千问 API 生成回答
def generate_answer(question, context, qwen):
    prompt = f"问题:{question}\n{context}"
    answer = qwen.chat(prompt)
    return answer

# 生成回答
answer = generate_answer(question, context, qwen)
print("通义千问回答:", answer)

4.2.4 示例输出

假设输入的问题为“政府如何推动科技创新?”,知识图谱中检索到的相关知识片段为:

政府 - 鼓励 - 企业
企业 - 加大 - 研发投入
研发投入 - 推动 - 科技创新

生成的上下文信息为:

知识图谱中的相关知识片段:
政府 - 鼓励 - 企业
企业 - 加大 - 研发投入
研发投入 - 推动 - 科技创新

通义千问 API 返回的回答可能如下:

通义千问回答:政府通过鼓励企业加大研发投入来推动科技创新。企业作为科技创新的主体,在政府的政策支持下,增加研发投入,从而推动科技创新的发展。这种政策支持不仅包括财政补贴、税收优惠等直接激励措施,还涵盖了人才培养、知识产权保护等间接支持手段,为科技创新营造了良好的环境。

通过上述步骤,基于 GraphRAG 技术成功实现了智能问答逻辑。结合知识图谱和通义千问大模型的优势,能够为用户提供准确、连贯且具有深度的回答,有效提升了问答系统的性能和用户体验。

5. 完整代码实现

5.1 三元组提取与存储代码

import os
from graphrag import GraphRAG
from py2neo import Graph

# 设置项目根目录
root_dir = "./graphrag_project"
os.makedirs(root_dir, exist_ok=True)

# 初始化 GraphRAG 项目
graphrag = GraphRAG(root_dir=root_dir)

# 配置 GraphRAG 参数
graphrag.config.llm.model = "通义千问"  # 使用通义千问大模型
graphrag.config.storage.type = "file"
graphrag.config.storage.base_dir = root_dir

# 读取文本文件
def read_text_file(file_path):
    with open(file_path, "r", encoding="utf-8") as file:
        return file.read()

# 准备文本数据
policy_text = read_text_file("./data/policy_utf8.txt")
business_text = read_text_file("./data/business_utf8.txt")

# 将文本数据传递给 GraphRAG
graphrag.add_text(policy_text, "policy")
graphrag.add_text(business_text, "business")

# 提取三元组
triplets = graphrag.extract_triplets()

# 连接到 Neo4j 数据库
neo4j_graph = Graph("bolt://localhost:7687", auth=("neo4j", "password"))

# 将三元组存入 Neo4j 构建知识图谱
def create_knowledge_graph(triplets, neo4j_graph):
    for triplet in triplets:
        subject, predicate, object = triplet
        # 创建主体节点
        subject_node = neo4j_graph.nodes.match("Entity", name=subject).first()
        if not subject_node:
            subject_node = neo4j_graph.nodes.create(name=subject, type="Entity")
        
        # 创建宾语节点
        object_node = neo4j_graph.nodes.match("Entity", name=object).first()
        if not object_node:
            object_node = neo4j_graph.nodes.create(name=object, type="Entity")
        
        # 创建关系边
        relation = neo4j_graph.relationships.match((subject_node, object_node), r_type=predicate).first()
        if not relation:
            relation = neo4j_graph.relationships.create(subject_node, predicate, object_node)

# 将三元组存入 Neo4j 构建知识图谱
create_knowledge_graph(triplets, neo4j_graph)

5.2 对接通义千问问答代码

from typing import Tuple
import dashscope

class Qwen:
    def __init__(self, api_key: str, qwen_model: str):
        self.api_key = api_key
        self.qwen_model = qwen_model

    def llm_qa(self, message: str) -> Tuple[str]:
        response = dashscope.Generation.call(
            model=self.qwen_model,  # 确保 qwen_model 已定义
            api_key=self.api_key,
            messages=message,
            temperature=0.4,
            stream=False,
            result_format='message',  # 设置结果为 "message" 格式。
        )
        response = response["output"]["choices"][0]["message"]["content"]

        return response

# 初始化通义千问客户端
qwen = Qwen(api_key="your_api_key", qwen_model="qwen-plus")

# 定义查询知识图谱的函数
def query_knowledge_graph(question, neo4j_graph):
    # 将问题转化为查询图(这里简化为关键词匹配)
    keywords = question.split()
    
    # 构造查询语句
    query = """
    MATCH (n)-[r]->(m)
    WHERE n.name IN $keywords OR m.name IN $keywords
    RETURN n.name AS subject, type(r) AS predicate, m.name AS object
    """
    
    # 执行查询
    results = neo4j_graph.run(query, keywords=keywords).data()
    
    # 提取查询结果中的知识片段
    knowledge_fragments = []
    for result in results:
        knowledge_fragments.append(f"{result['subject']} - {result['predicate']} - {result['object']}")
    
    return knowledge_fragments

# 定义生成上下文信息的函数
def generate_context(knowledge_fragments):
    context = "知识图谱中的相关知识片段:\n" + "\n".join(knowledge_fragments)
    return context

# 定义调用通义千问 API 生成回答的函数
def generate_answer(question, context, qwen):
    prompt = f"问题:{question}\n{context}"
    answer = qwen.llm_qa(prompt)
    return answer

# 测试问答
question = "政府如何推动科技创新?"
knowledge_fragments = query_knowledge_graph(question, neo4j_graph)
context = generate_context(knowledge_fragments)
answer = generate_answer(question, context, qwen)
print("通义千问回答:", answer)

6. 测试与优化

6.1 测试问答功能

为了验证基于 GraphRAG 的智能问答系统的有效性,需要进行详细的测试。测试问答功能主要关注系统的准确性和响应速度。以下是具体的测试步骤和方法:

6.1.1 准备测试用例

准备一组多样化的测试用例,涵盖不同的问题类型和领域。测试用例应包括但不限于以下几类:

  • 政策相关问题:例如“政府如何推动科技创新?”
  • 商业相关问题:例如“公司 A 与哪些公司有合作关系?”
  • 综合问题:涉及多个领域的复杂问题,例如“企业加大研发投入对科技创新和市场竞争力的影响是什么?”

6.1.2 执行测试

使用准备好的测试用例,通过问答系统获取回答,并记录回答的准确性和响应时间。以下是测试代码示例:

# 测试问答功能
def test_qa_system(question, neo4j_graph, qwen):
    # 查询知识图谱
    knowledge_fragments = query_knowledge_graph(question, neo4j_graph)
    # 生成上下文信息
    context = generate_context(knowledge_fragments)
    # 调用通义千问 API 生成回答
    answer = generate_answer(question, context, qwen)
    return answer

# 测试用例
test_questions = [
    "政府如何推动科技创新?",
    "公司 A 与哪些公司有合作关系?",
    "企业加大研发投入对科技创新和市场竞争力的影响是什么?"
]

# 执行测试
for question in test_questions:
    answer = test_qa_system(question, neo4j_graph, qwen)
    print(f"问题:{question}")
    print(f"回答:{answer}")
    print("-" * 50)

6.1.3 评估测试结果

根据测试结果,评估系统的准确性和响应时间。准确性的评估可以通过以下指标进行:

  • 准确率:回答完全符合预期的比例。
  • 召回率:系统能够回答的问题占总问题的比例。
  • F1 分数:准确率和召回率的调和平均值。

响应时间的评估可以通过记录每次问答的耗时来进行。理想情况下,系统的平均响应时间应低于 1 秒,以满足实时交互的需求。

6.1.4 示例测试结果

假设测试用例的评估结果如下:

问题回答准确性响应时间
政府如何推动科技创新?政府通过鼓励企业加大研发投入来推动科技创新。企业作为科技创新的主体,在政府的政策支持下,增加研发投入,从而推动科技创新的发展。0.8 秒
公司 A 与哪些公司有合作关系?公司 A 与公司 B 签订了合作协议。0.5 秒
企业加大研发投入对科技创新和市场竞争力的影响是什么?企业加大研发投入可以推动科技创新,进而提升市场竞争力。研发投入不仅有助于开发新产品和技术,还能提高企业的品牌知名度和市场份额。1.2 秒

从测试结果来看,系统在处理政策和商业相关问题时表现良好,准确率高且响应时间较短。但在处理复杂的综合问题时,响应时间稍长,需要进一步优化。

6.2 性能优化与问题解决

根据测试结果,对系统进行性能优化和问题解决,以提高系统的整体性能和用户体验。以下是具体的优化措施:

6.2.1 知识图谱优化

  • 数据清洗:确保知识图谱中的数据质量,去除重复和错误的节点和关系。
  • 索引优化:为知识图谱中的节点和关系添加索引,加快查询速度。
  • 图结构优化:优化知识图谱的结构,减少冗余关系,提高查询效率。

6.2.2 问答逻辑优化

  • 上下文生成优化:优化上下文生成逻辑,减少不必要的信息,提高通义千问大模型的处理速度。
  • 问题分解:对于复杂问题,将其分解为多个子问题,分别查询知识图谱并生成回答,最后进行整合。

6.2.3 系统性能优化

  • 并行处理:在知识图谱查询和大模型调用过程中,引入并行处理机制,提高系统的吞吐量。
  • 缓存机制:为频繁查询的问题和知识片段设置缓存,减少重复计算,提高响应速度。
  • 资源优化:合理配置系统资源,确保在高并发情况下系统的稳定运行。

6.2.4 示例优化代码

以下是一个优化后的问答逻辑代码示例:

# 优化后的查询知识图谱函数
def optimized_query_knowledge_graph(question, neo4j_graph):
    # 将问题转化为查询图(这里简化为关键词匹配)
    keywords = question.split()
    
    # 构造查询语句
    query = """
    MATCH (n)-[r]->(m)
    WHERE n.name IN $keywords OR m.name IN $keywords
    RETURN n.name AS subject, type(r) AS predicate, m.name AS object
    """
    
    # 执行查询
    results = neo4j_graph.run(query, keywords=keywords).data()
    
    # 提取查询结果中的知识片段
    knowledge_fragments = []
    for result in results:
        knowledge_fragments.append(f"{result['subject']} - {result['predicate']} - {result['object']}")
    
    # 缓存查询结果
    cache_key = hash(question)
    knowledge_cache[cache_key] = knowledge_fragments
    
    return knowledge_fragments

# 优化后的生成上下文信息函数
def optimized_generate_context(knowledge_fragments):
    # 去除重复的知识片段
    unique_fragments = list(set(knowledge_fragments))
    context = "知识图谱中的相关知识片段:\n" + "\n".join(unique_fragments)
    return context

# 优化后的调用通义千问 API 生成回答函数
def optimized_generate_answer(question, context, qwen):
    # 检查缓存
    cache_key = hash(question)
    if cache_key in answer_cache:
        return answer_cache[cache_key]
    
    # 调用通义千问 API
    prompt = f"问题:{question}\n{context}"
    answer = qwen.chat(prompt)
    
    # 缓存回答
    answer_cache[cache_key] = answer
    return answer

6.2.5 问题解决

在测试过程中,可能会遇到一些具体问题,如知识图谱中缺少某些关键信息、大模型生成的回答不够准确等。针对这些问题,可以采取以下措施:

  • 知识图谱补充:定期更新知识图谱,补充缺失的信息,确保知识的完整性和时效性。
  • 大模型微调:根据具体的应用场景,对通义千问大模型进行微调,提高其在特定领域的回答准确性。
  • 用户反馈机制:建立用户反馈机制,收集用户对回答的评价和建议,持续优化系统性能。

通过上述测试与优化措施,可以显著提升基于 GraphRAG 的智能问答系统的性能和用户体验,使其在实际应用中发挥更大的价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值