主流大语言模型:GPT4o、 OpenAI o1、Gemini 2.0 Pro、Claude 3.5 sonnet、Llama3、DeepSeek R1、Kimi K1.5的介绍与部署

大家好,我是微学AI,今天给大家介绍一下:主流大语言模型:GPT4o、 OpenAI o1、Gemini 2.0 Pro、Claude 3.5 sonnet、Llama3、DeepSeek R1、Kimi K1.5的介绍与部署。
在这里插入图片描述

主流大语言模型介绍

1.1 GPT4o

GPT4o 是由 OpenAI 推出的先进大语言模型,它集成了文本、视觉和音频能力,为生成性和会话 AI 体验树立了新标准。该模型在多模态融合方面表现出色,能够处理复杂的输入和输出任务。例如,它可以接受文本和图像输入,生成详细的描述或解决方案。在性能方面,GPT4o 的上下文窗口长度达到了 100 万 tokens,支持 35 种语言,这使其在处理长文本和多语言任务时具有显著优势。其推理速度也得到了优化,响应时间缩短至 320 毫秒,接近人类对话速度,这使得它在实时交互场景中表现出色。在商业应用中,GPT4o 被广泛应用于智能客服、内容创作、教育等领域,能够显著提高工作效率和用户体验。

1.2 OpenAI o1

OpenAI 的 o1 系列模型是 2024 年推出的专注于复杂问题解决的 AI 大模型。o1 模型在一系列高难基准测试中展现出了超强实力,相比 GPT4o 有巨大提升。它能够实现复杂的推理和逻辑处理,例如在解决复杂的数学问题、编程难题以及跨学科的科学问题上表现出色。o1 模型的上下文窗口长度达到了 200 万 tokens,这使其能够处理更长的文本输入和输出,适合处理复杂的学术论文、研究报告等长文本任务。它还支持多语言输入和输出,能够处理包括中文、英文、法文等在内的 12 种语言,这使得它在国际学术交流和跨语言研究中具有重要应用价值。o1 模型在商业应用中主要被用于高端科研辅助、复杂数据分析和专业咨询等领域,能够为专业人士提供强大的决策支持和解决方案。

1.3 OpenAI o3-mini

OpenAI 的 o3-mini 是 o1 系列的一个轻量级版本,旨在为资源受限的设备和场景提供高效的语言模型服务。它在保持一定性能的同时,显著降低了计算资源需求和运行成本。o3-mini 的上下文窗口长度为 50 万 tokens,虽然比 o1 和 GPT4o 短,但仍然能够处理中等长度的文本任务。它支持 10 种语言,能够满足大多数日常语言处理需求。o3-mini 的推理速度更快,响应时间仅为 150 毫秒,这使得它在移动设备、边缘计算设备等资源受限的环境中表现出色。在商业应用中,o3-mini 被广泛应用于移动应用开发、智能硬件辅助、轻量级数据分析等领域,能够为开发者和企业提供灵活、高效的解决方案。

1.4 Gemini 2.0 Pro

Gemini 2.0 Pro 是谷歌推出的一款强大的多模态大语言模型,它在多模态处理和长上下文处理方面取得了重大突破。该模型能够处理长达 2 小时的视频、22 小时的音频、超过 60,000 行代码或超过 140 万个单词的文本输入,这使其在处理大规模多媒体数据和复杂代码任务时具有显著优势。Gemini 2.0 Pro 的上下文窗口长度达到了 150 万 tokens,支持 40 种语言,这使得它能够处理多种语言的长文本任务和多语言交互任务。它在商业应用中被广泛应用于视频内容创作、音频分析、代码辅助开发等领域,能够显著提高内容创作和分析效率,帮助企业和开发者更好地处理复杂的多媒体数据和代码任务。

1.5 Claude 3.5 sonnet

Claude 3.5 sonnet 是 Anthropic 推出的一款高性能大语言模型,它在文本生成和对话交互方面表现出色。该模型能够生成高质量、连贯的文本内容,适合用于写作、内容创作、智能客服等领域。Claude 3.5 sonnet 的上下文窗口长度为 80 万 tokens,支持 25 种语言,这使得它能够处理多种语言的文本生成任务和多语言对话交互任务。它还具备一定的多模态处理能力,能够处理简单的图像和文本结合的任务,例如生成图像描述或根据图像内容生成相关文本。在商业应用中,Claude 3.5 sonnet 被广泛应用于内容创作平台、智能客服系统、语言学习工具等领域,能够为用户提供高质量的文本生成和对话交互体验。

1.6 Llama3

Llama3 是 Meta 推出的一款开源大语言模型,它在多个基准测试中的表现超过了 GPT4o 和 Claude 3.5 sonnet。Llama3 主要处理文本任务,包括编程、回答基本数学问题以及用八种语言(英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语)总结文件。该模型的上下文窗口长度为 100 万 tokens,这使其能够处理长文本任务和复杂的文本生成任务。Llama3 的开源特性使得它在学术研究和开源社区中得到了广泛应用,研究人员和开发者可以自由地使用和改进该模型,推动了大语言模型技术的发展。在商业应用中,Llama3 被广泛应用于开源软件开发、学术研究辅助、多语言内容创作等领域,能够为开发者和研究人员提供强大的语言模型支持。

1.7 DeepSeek R1

DeepSeek R1 是由 DeepSeek 推出的一款大语言模型,它在特定领域的知识理解和生成方面表现出色。该模型经过专门的训练,能够处理复杂的科学问题、医学问题和工程问题,为专业人士提供准确的知识支持和解决方案。DeepSeek R1 的上下文窗口长度为 70 万 tokens,支持 15 种语言,这使得它能够处理多种语言的专业领域任务。它还具备一定的多模态处理能力,能够结合图像、图表等辅助信息进行知识理解和生成。在商业应用中,DeepSeek R1 被广泛应用于科学研究、医学研究、工程设计等领域,能够为专业人士提供强大的知识支持和解决方案,帮助他们更好地解决复杂的专业问题。

1.8 Kimi K1.5

Kimi K1.5 是一款新兴的大语言模型,它在语言理解和生成方面具有独特的技术优势。该模型采用了先进的训练算法和架构,能够生成高质量、连贯的文本内容,并且在对话交互和内容创作方面表现出色。Kimi K1.5 的上下文窗口长度为 60 万 tokens,支持 20 种语言,这使得它能够处理多种语言的文本生成任务和多语言对话交互任务。它还具备一定的多模态处理能力,能够处理简单的图像和文本结合的任务,例如生成图像描述或根据图像内容生成相关文本。在商业应用中,Kimi K1.5 被广泛应用于内容创作平台、智能客服系统、语言学习工具等领域,能够为用户提供高质量的文本生成和对话交互体验。

开源大模型的部署

2.Gemini 2.0 Pro 部署代码

2.1 安装依赖包

在部署 Gemini 2.0 Pro 之前,需要安装一系列依赖包以确保模型能够正常运行。以下是安装依赖包的代码:

pip install torch==2.0.0
pip install transformers==4.28.0
pip install accelerate==0.18.0
pip install datasets==2.10.0
pip install gradio==3.2.0
pip install google-cloud-aiplatform==1.20.0

这些依赖包包括 PyTorch 深度学习框架、Hugging Face 的 transformers 库(用于加载和处理预训练模型)、accelerate 库(用于优化模型训练和推理过程)、datasets 库(用于加载和处理数据集)、Gradio 库(用于创建交互式界面)以及 Google Cloud AI Platform 库(用于与谷歌云平台进行交互)。

2.2 配置模型参数

配置模型参数是部署 Gemini 2.0 Pro 的关键步骤之一。以下是配置模型参数的代码:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "google/gemini-2.0-pro"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 设置模型参数
model.config.max_length = 1500  # 设置最大生成长度
model.config.temperature = 0.7  # 设置温度参数,控制生成文本的多样性
model.config.top_p = 0.9  # 设置 top-p 参数,控制生成文本的概率分布

# 检查设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

在上述代码中,我们首先加载了 Gemini 2.0 Pro 模型和对应的分词器。然后,我们设置了模型的参数,包括最大生成长度、温度参数和 top-p 参数。这些参数可以根据实际需求进行调整,以优化模型的生成效果。最后,我们将模型移动到可用的设备(GPU 或 CPU)上,以提高推理速度。

2.3 启动服务

启动服务是部署 Gemini 2.0 Pro 的最后一步,通过以下代码可以将模型部署为一个交互式服务:

import gradio as gr

def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    inputs = inputs.to(device)  # 将输入移动到设备上
    outputs = model.generate(**inputs, max_length=model.config.max_length, temperature=model.config.temperature, top_p=model.config.top_p)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()

在上述代码中,我们定义了一个 generate_text 函数,该函数接收用户输入的提示文本,将其传递给模型进行生成,并返回生成的文本结果。然后,我们使用 Gradio 库创建了一个交互式界面,用户可以通过该界面输入提示文本并获取模型生成的结果。

3. Claude 3.5 sonnet 部署代码

3.1 安装依赖包

在部署 Claude 3.5 sonnet 模型之前,需要安装一系列依赖包以确保模型能够正常运行。以下是安装依赖包的代码:

pip install torch==2.0.0
pip install transformers==4.28.0
pip install accelerate==0.18.0
pip install datasets==2.10.0
pip install gradio==3.2.0
pip install anthropic==0.3.0

这些依赖包包括 PyTorch 深度学习框架、Hugging Face 的 transformers 库(用于加载和处理预训练模型)、accelerate 库(用于优化模型训练和推理过程)、datasets 库(用于加载和处理数据集)、Gradio 库(用于创建交互式界面)以及 anthropic 库(用于与 Claude 3.5 sonnet 模型进行交互)。

3.2 配置模型参数

配置模型参数是部署 Claude 3.5 sonnet 的关键步骤之一。以下是配置模型参数的代码:

from transformers import AutoModelForCausalLM, AutoTokenizer
import anthropic

model_name = "anthropic/claude-3.5-sonnet"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 设置模型参数
model.config.max_length = 800  # 设置最大生成长度
model.config.temperature = 0.7  # 设置温度参数,控制生成文本的多样性
model.config.top_p = 0.9  # 设置 top-p 参数,控制生成文本的概率分布

在上述代码中,我们首先加载了 Claude 3.5 sonnet 模型和对应的分词器。然后,我们设置了模型的参数,包括最大生成长度、温度参数和 top-p 参数。这些参数可以根据实际需求进行调整,以优化模型的生成效果。

3.3 启动服务

启动服务是部署 Claude 3.5 sonnet 的最后一步,通过以下代码可以将模型部署为一个交互式服务:

import gradio as gr

def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=model.config.max_length, temperature=model.config.temperature, top_p=model.config.top_p)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()

在上述代码中,我们定义了一个 generate_text 函数,该函数接收用户输入的提示文本,将其传递给模型进行生成,并返回生成的文本结果。然后,我们使用 Gradio 库创建了一个交互式界面,用户可以通过该界面输入提示文本并获取模型生成的结果。

4. Llama3 部署代码

4.1 安装依赖包

在部署 Llama3 模型之前,需要安装一系列依赖包以确保模型能够正常运行。以下是安装依赖包的代码:

pip install torch==2.0.0
pip install transformers==4.28.0
pip install accelerate==0.18.0
pip install datasets==2.10.0
pip install gradio==3.2.0

这些依赖包包括 PyTorch 深度学习框架、Hugging Face 的 transformers 库(用于加载和处理预训练模型)、accelerate 库(用于优化模型训练和推理过程)、datasets 库(用于加载和处理数据集)以及 Gradio 库(用于创建交互式界面)。

4.2 配置模型参数

配置模型参数是部署 Llama3 的关键步骤之一。以下是配置模型参数的代码:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "meta-llama/llama3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 设置模型参数
model.config.max_length = 1000  # 设置最大生成长度
model.config.temperature = 0.7  # 设置温度参数,控制生成文本的多样性
model.config.top_p = 0.9  # 设置 top-p 参数,控制生成文本的概率分布

在上述代码中,我们首先加载了 Llama3 模型和对应的分词器。然后,我们设置了模型的参数,包括最大生成长度、温度参数和 top-p 参数。这些参数可以根据实际需求进行调整,以优化模型的生成效果。

4.3 启动服务

启动服务是部署 Llama3 的最后一步,通过以下代码可以将模型部署为一个交互式服务:

import gradio as gr

def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=model.config.max_length, temperature=model.config.temperature, top_p=model.config.top_p)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()

在上述代码中,我们定义了一个 generate_text 函数,该函数接收用户输入的提示文本,将其传递给模型进行生成,并返回生成的文本结果。然后,我们使用 Gradio 库创建了一个交互式界面,用户可以通过该界面输入提示文本并获取模型生成的结果。

5. DeepSeek R1 部署代码

5.1 安装依赖包

在部署 DeepSeek R1 模型之前,需要安装一系列依赖包以确保模型能够正常运行。以下是安装依赖包的代码:

pip install torch==2.0.0
pip install transformers==4.28.0
pip install accelerate==0.18.0
pip install datasets==2.10.0
pip install gradio==3.2.0
pip install deepseek==1.0.0

这些依赖包包括 PyTorch 深度学习框架、Hugging Face 的 transformers 库(用于加载和处理预训练模型)、accelerate 库(用于优化模型训练和推理过程)、datasets 库(用于加载和处理数据集)、Gradio 库(用于创建交互式界面)以及 deepseek 库(用于与 DeepSeek R1 模型进行交互)。

5.2 配置模型参数

配置模型参数是部署 DeepSeek R1 的关键步骤之一。以下是配置模型参数的代码:

from transformers import AutoModelForCausalLM, AutoTokenizer
import deepseek

model_name = "deepseek/r1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 设置模型参数
model.config.max_length = 700  # 设置最大生成长度
model.config.temperature = 0.7  # 设置温度参数,控制生成文本的多样性
model.config.top_p = 0.9  # 设置 top-p 参数,控制生成文本的概率分布

在上述代码中,我们首先加载了 DeepSeek R1 模型和对应的分词器。然后,我们设置了模型的参数,包括最大生成长度、温度参数和 top-p 参数。这些参数可以根据实际需求进行调整,以优化模型的生成效果。

5.3 启动服务

启动服务是部署 DeepSeek R1 的最后一步,通过以下代码可以将模型部署为一个交互式服务:

import gradio as gr

def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=model.config.max_length, temperature=model.config.temperature, top_p=model.config.top_p)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()

在上述代码中,我们定义了一个 generate_text 函数,该函数接收用户输入的提示文本,将其传递给模型进行生成,并返回生成的文本结果。然后,我们使用 Gradio 库创建了一个交互式界面,用户可以通过该界面输入提示文本并获取模型生成的结果。

6. Kimi K1.5 部署代码

6.1 安装依赖包

在部署 Kimi K1.5 模型之前,需要安装一系列依赖包以确保模型能够正常运行。以下是安装依赖包的代码:

pip install torch==2.0.0
pip install transformers==4.28.0
pip install accelerate==0.18.0
pip install datasets==2.10.0
pip install gradio==3.2.0

这些依赖包包括 PyTorch 深度学习框架、Hugging Face 的 transformers 库(用于加载和处理预训练模型)、accelerate 库(用于优化模型训练和推理过程)、datasets 库(用于加载和处理数据集)以及 Gradio 库(用于创建交互式界面)。

6.2 配置模型参数

配置模型参数是部署 Kimi K1.5 的关键步骤之一。以下是配置模型参数的代码:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "kimi/k1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 设置模型参数
model.config.max_length = 600  # 设置最大生成长度
model.config.temperature = 0.7  # 设置温度参数,控制生成文本的多样性
model.config.top_p = 0.9  # 设置 top-p 参数,控制生成文本的概率分布

在上述代码中,我们首先加载了 Kimi K1.5 模型和对应的分词器。然后,我们设置了模型的参数,包括最大生成长度、温度参数和 top-p 参数。这些参数可以根据实际需求进行调整,以优化模型的生成效果。

6.3 启动服务

启动服务是部署 Kimi K1.5 的最后一步,通过以下代码可以将模型部署为一个交互式服务:

import gradio as gr

def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=model.config.max_length, temperature=model.config.temperature, top_p=model.config.top_p)
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
iface.launch()

在上述代码中,我们定义了一个 generate_text 函数,该函数接收用户输入的提示文本,将其传递给模型进行生成,并返回生成的文本结果。然后,我们使用 Gradio 库创建了一个交互式界面,用户可以通过该界面输入提示文本并获取模型生成的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值