DAIN配环境问题

github上说最新适配DAIN的pytorch是1.4.0

按照readme上面requirements安装pytorch1.0.0(https://github.com/baowenbo/DAIN/blob/master/README.md

注释掉my_package/build.sh中source activate pytorch=1.0.0之后install成功

运行后遇到undefined symbol问题

发现setup.py install时,cuda目录是用的服务器usr/local/cuda10.0,但是环境中CUDA=9.0,所以uninstall cudatoolkit9.0,pytorch,torchvision等,重新安装cudatoolkit=10.0等。

现在好像运行成功了

换pytorch版本后重新build.sh

内容概要:《中国HR+HER2-早期乳腺癌患者诊疗需求调研白皮书》聚焦于中国早期HR+/HER2-乳腺癌患者的诊疗现状和需求。白皮书通过定量调研,揭示了患者在确诊、复发风险评估、术后辅助治疗及长期管理等各阶段面临的挑战,包括对新药的期待、信息需求及信息渠道偏好。调研显示,患者对新型辅助治疗方案的疗效和生活质量提升寄予厚望,但也存在对不良反应的担忧。此外,患者在理解诊断报告、复发风险认知及获取权威信息方面存在诸多障碍。白皮书呼吁加强患者教育、优化医患沟通、提高新药可及性,以改善患者预后和生活质量。 适合人群:早期HR+/HER2-乳腺癌患者、家属、临床医生及相关医疗工作者。 使用场景及目标:①帮助患者更好地理解诊断结果和后续治疗方案;②为临床医生提供患者需求和挑战的真实数据,优化诊疗路径;③推动社会各界关注和支持早期乳腺癌患者的教育和管理,助力患者早日康复,重获高质量生活。 其他说明:白皮书强调了早期乳腺癌患者在诊疗旅程中面临的多重障碍,包括早期筛查覆盖率不足、复发风险认知偏差及医患沟通壁垒。为应对这些挑战,白皮书提出了多项改进建议,如加强乳腺健康教育、优化诊断结果沟通方式、提升患者对复发风险的认知、强化不良反应管理及构建权威信息平台等。
### DAIN项目复现方法及相关资源 #### 1. DAIN项目简介 Depth-Aware Video Frame Interpolation (DAIN)[^1] 是一种基于深度感知的视频帧插值算法,旨在通过预测中间帧来提高视频的时间分辨率。该模型利用了深度图估计以及光流计算等技术,在生成高质量中间帧方面表现优异。 #### 2. GitHub代码实现 GitHub仓库 `baowenbo/DAIN` 提供了完整的源码和训练脚本。以下是其主要功能模块及其对应的文件结构: - **核心网络架构**: 主要位于 `model.py` 文件中定义,包含了用于特征提取、光流估计、深度感知融合等功能的核心组件。 - **数据预处理**: 数据加载器实现在 `dataset.py` 中,支持多种输入格式(如图像序列或视频),并提供必要的增强操作以提升泛化能力。 - **推理与测试**: 推理部分可以通过运行 `test.py` 脚本来完成,用户只需指定待处理的两帧图片路径即可获得插值后的结果。 ```bash # 测试命令示例 python test.py --netName DAIN_slowmotion --inputImage ./examples/input_image_0.png ./examples/input_image_1.png --outputFolder ./results/ ``` 上述命令会读取两张连续帧作为输入,并输出它们之间的插值帧到指定目录下。 #### 3. 训练过程说明 如果希望重新训练模型,则需按照以下步骤准备环境置参数: - 安装依赖库:确保安装 PyTorch 及其他必要工具包; - 下载公开数据集:例如 Vimeo-90K 或 UCF101 等适于视频插值任务的数据集合; - 修改置选项:调整超参设置(学习率、批次大小等)并通过调用 `train.py` 开始迭代优化流程。 注意:由于此模型涉及复杂的多分支设计,因此建议使用 GPU 加速运算效率。 #### 4. 其他相关工作对比 相比传统方法仅依靠像素运动补偿机制完成简单线性混合,《Video frame interpolation via adaptive convolution》提出了自适应卷积策略进一步改进效果质量[^2];而《Zooming Slow-Mo》则尝试结合时空域联合建模思路探索更高性能解决方案[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值