神经网络可以计算任何函数的可视化证明
试着用Python编写了书中第4章例子的代码,进一步加深了对书中所讲的理解,代码如下:
"""
绘制各种权重和偏置下的S型函数图像,《神经网络与深度学习》P121的例子
"""
import numpy as np
import matplotlib.pyplot as plt
#S型激活函数值
def sigmoid(x, w,b):
z = np.dot(w,x)+b
return 1/(1+ np.exp(-z))
#一层隐藏神经元的网络
#s:阶跃位置参数
#h:凸起高度
def cal_grid(x,s,h):
init_w = 1000
w = np.dot(np.ones((len(s),1)),init_w)
b = -1 * np.dot((np.array(s)).reshape(len(s),1),init_w)
#计算隐藏层输出,使用S型激活函数
activations = []
np.set_printoptions(precision=3, suppress=True)
for i in x:
activations.append(sigmoid(i,w,b))
#print("activation:{}".format(activations[:5]))
#计算网络输出,加权输出:sum(w*a)
heights = np.array(h)
results = []
for index, a in enumerate(activations):
output = np.dot(heights, a)
#if output[0]>=1:
# print("at {} is{}, outpt is {}, x is {}".format(index, a, output, x[index]))
results.append(output)
#results.append(sigmoid(a,heights,0))
return results
interval = 0.01
x = np.arange(0,1,interval)
#s = [0.4,0.6,0.7,0.9]
#h = [-1.2,1.2,0.3,-0.3]
s = [0.0,0.2,0.2,0.4,0.4,0.6,0.6,0.8,0.8,1.0]
h = [-0.3,0.3,-1.3,1.3,-0.5,0.5,1.3,-1.3,-0.2,0.2]
a =cal_grid(x,s,h)
plt.plot(x,a)
#设置横坐标的位置,使其放置在0的位置
ax=plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('data',0))
ax.xaxis.set_ticks_position('bottom')
plt.show()
在上述代码中,网络采用了书中定义的三层网络,即一层隐藏神经单元,通过cal_grid函数可以计算出网络输出,其中,
- 隐藏层采用了S型激活函数,即sigmoid(wx+b),其中的w和b是通过输入参数s计算得出。s为”凸起“的位置(取0~1之间的数),w默认为1000,b=-1000*s;
- 输出层为隐藏层激活值的加权输出,即w1a1+w2a2+…,其中的w为输入参数h,表示凸起的高度(正负均可);
- 上述代码运行的网络结构如下图所示:
上述代码的运行结果如下图:
消失的梯度
另外,今天也试着推导了”消失的梯度“的表达式(下图)。书中有前两项的推导,试着将其推导完整。
表达式的推导步骤: