<leetcode>一些常用模板

// 快速排序算法模板
void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
        else break;
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

// 归并排序算法模板
void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] < q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

// 整数二分算法模板

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

// 浮点数二分算法模板

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

// 高精度加法
// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

// 高精度减法
// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

// 高精度乘低精度
// C = A * b, A >= 0, b > 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    return C;
}

// 高精度除以低精度
// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

// 一维前缀和
// S[i] = a[1] + a[2] + ... a[i]
// a[l] + ... + a[r] = S[r] - S[l - 1]
// 二维前缀和
// S[i, j] = 第i行j列格子左上部分所有元素的和
// 以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为 S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]

// 一维差分
// B[i] = a[i] - a[i - 1]
// 给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c
// 二维差分
// 给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
// S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c

1, 位运算
    求n的第k位数字: n >> k & 1
    返回n的最后一位1lowbit(n) = n & -n

2. 双指针算法
    for (int i = 0, j = 0; i < n; i ++ )
    {
        while (j < i && check(i, j)) j ++ ;

        // 具体问题的逻辑
    }
    常见问题分类:
        (1) 对于一个序列,用两个指针维护一段区间
        (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

3. 离散化
    vector<int> alls; // 存储所有待离散化的值
    sort(alls.begin(), alls.end()); // 将所有值排序
    alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素

    // 二分求出x对应的离散化的值
    int find(int x)
    {
        int l = 0, r = alls.size() - 1;
        while (l < r)
        {
            int mid = l + r >> 1;
            if (alls[mid] >= x) r = mid;
            else l = mid + 1;
        }
        return r + 1;
    }


4. 区间合并

    // 将所有存在交集的区间合并
    void merge(vector<PII> &segs)
    {
        vector<PII> res;

        sort(segs.begin(), segs.end());

        int st = -2e9, ed = -2e9;
        for (auto seg : segs)
            if (ed < seg.first)
            {
                if (st != -2e9) res.push_back({st, ed});
                st = seg.first, ed = seg.second;
            }
            else ed = max(ed, seg.second);

        if (st != -2e9) res.push_back({st, ed});

        segs = res;
    }

    1. 单链表
// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;

// 初始化
void init()
{
    head = -1;
    idx = 0;
}

// 在链表头插入一个数a
void insert(int a)
{
    e[idx] = a, ne[idx] = head, head = idx ++ ;
}

// 将头结点删除,需要保证头结点存在
void remove()
{
    head = ne[head];
}


2. 双链表
// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;

// 初始化
void init()
{
    //0是左端点,1是右端点
    r[0] = 1, l[1] = 0;
    idx = 2;
}

// 在节点a的右边插入一个数x
void insert(int a, int x)
{
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx ++ ;
}

// 删除节点a
void remove(int a)
{
    l[r[a]] = l[a];
    r[l[a]] = r[a];
}


3.// tt表示栈顶
int stk[N], tt = 0;

// 向栈顶插入一个数
stk[ ++ tt] = x;

// 从栈顶弹出一个数
tt -- ;

// 栈顶的值
stk[tt];

// 判断栈是否为空
if (tt > 0)
{

}


4. 队列
// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;

// 向队尾插入一个数
q[ ++ tt] = x;

// 从队头弹出一个数
hh ++ ;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh <= tt)
{

}


5. 单调栈
    常见模型:找出每个数左边离它最近的比它大/小的数
    int tt = 0;
    for (int i = 1; i <= n; i ++ )
    {
        while (tt && check(q[tt], i)) tt -- ;
        stk[ ++ tt] = i;
    }


6. 单调队列
    常见模型:找出滑动窗口中的最大值/最小值
    int hh = 0, tt = -1;
    for (int i = 0; i < n; i ++ )
    {
        while (hh <= tt && check_out(q[hh])) hh ++ ;  // 判断队头是否滑出窗口
        while (hh <= tt && check(q[tt], i)) tt -- ;
        q[ ++ tt] = i;
    }


7. KMP
    求Next数组:
    // s[]是模式串,p[]是模板串, n是s的长度,m是p的长度
    for (int i = 2, j = 0; i <= m; i ++ )
    {
        while (j && p[i] != p[j + 1]) j = ne[j];
        if (p[i] == p[j + 1]) j ++ ;
        ne[i] = j;
    }

    // 匹配
    for (int i = 1, j = 0; i <= n; i ++ )
    {
        while (j && s[i] != p[j + 1]) j = ne[j];
        if (s[i] == p[j + 1]) j ++ ;
        if (j == m)
        {
            j = ne[j];
            // 匹配成功后的逻辑
        }
    }

    1. Trie树

    int son[N][26], cnt[N], idx;
    // 0号点既是根节点,又是空节点
    // son[][]存储树中每个节点的子节点
    // cnt[]存储以每个节点结尾的单词数量

    // 插入一个字符串
    void insert(char *str)
    {
        int p = 0;
        for (int i = 0; str[i]; i ++ )
        {
            int u = str[i] - 'a';
            if (!son[p][u]) son[p][u] = ++ idx;
            p = son[p][u];
        }
        cnt[p] ++ ;
    }

    // 查询字符串出现的次数
    int query(char *str)
    {
        int p = 0;
        for (int i = 0; str[i]; i ++ )
        {
            int u = str[i] - 'a';
            if (!son[p][u]) return 0;
            p = son[p][u];
        }
        return cnt[p];
    }


2. 并查集

    (1)朴素并查集:

        int p[N]; //存储每个点的祖宗节点

        // 返回x的祖宗节点
        int find(int x)
        {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }

        // 初始化,假定节点编号是1~n
        for (int i = 1; i <= n; i ++ ) p[i] = i;

        // 合并a和b所在的两个集合:
        p[find(a)] = find(b);


    (2)维护size的并查集:

        int p[N], size[N];
        //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

        // 返回x的祖宗节点
        int find(int x)
        {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }

        // 初始化,假定节点编号是1~n
        for (int i = 1; i <= n; i ++ )
        {
            p[i] = i;
            size[i] = 1;
        }

        // 合并a和b所在的两个集合:
        p[find(a)] = find(b);
        size[b] += size[a];


    (3)维护到祖宗节点距离的并查集:

        int p[N], d[N];
        //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

        // 返回x的祖宗节点
        int find(int x)
        {
            if (p[x] != x)
            {
                int u = find(p[x]);
                d[x] += d[p[x]];
                p[x] = u;
            }
            return p[x];
        }

        // 初始化,假定节点编号是1~n
        for (int i = 1; i <= n; i ++ )
        {
            p[i] = i;
            d[I] = 0;
        }

        // 合并a和b所在的两个集合:
        p[find(a)] = find(b);
        d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量


3.// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
    // ph[k]存储第k个插入的点在堆中的位置
    // hp[k]存储堆中下标是k的点是第几个插入的
    int h[N], ph[N], hp[N], size;

    // 交换两个点,及其映射关系
    void heap_swap(int a, int b)
    {
        swap(ph[hp[a]],ph[hp[b]]);
        swap(hp[a], hp[b]);
        swap(h[a], h[b]);
    }

    void down(int u)
    {
        int t = u;
        if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
        if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
        if (u != t)
        {
            heap_swap(u, t);
            down(t);
        }
    }

    void up(int u)
    {
        while (u / 2 && h[u] < h[u / 2])
        {
            heap_swap(u, u / 2);
            u >>= 1;
        }
    }

    // O(n)建堆
    for (int i = n / 2; i; i -- ) down(i);

1. 哈希
    一般哈希
        (1) 拉链法
            int h[N], e[N], ne[N], idx;

            // 向哈希表中插入一个数
            void insert(int x)
            {
                int k = (x % N + N) % N;
                e[idx] = x;
                ne[idx] = h[k];
                h[k] = idx ++ ;
            }

            // 在哈希表中查询某个数是否存在
            bool find(int x)
            {
                int k = (x % N + N) % N;
                for (int i = h[k]; i != -1; i = ne[i])
                    if (e[i] == x)
                        return true;

                return false;
            }

        (2) 开放寻址法
            int h[N];

            // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
            int find(int x)
            {
                int t = (x % N + N) % N;
                while (h[t] != null && h[t] != x)
                {
                    t ++ ;
                    if (t == N) t = 0;
                }
                return t;
            }

    字符串哈希
        核心思想:将字符串看成P进制数,P的经验值是13113331,取这两个值的冲突概率低
        小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

        typedef unsigned long long ULL;
        ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

        // 初始化
        p[0] = 1;
        for (int i = 1; i <= n; i ++ )
        {
            h[i] = h[i - 1] * P + str[i];
            p[i] = p[i - 1] * P;
        }

        // 计算子串 str[l ~ r] 的哈希值
        ULL get(int l, int r)
        {
            return h[r] - h[l - 1] * p[r - l + 1];
        }

2. C++ STL简介
    vector, 变长数组,倍增的思想
        size()  返回元素个数
        empty()  返回是否为空
        clear()  清空
        front()/back()
        push_back()/pop_back()
        begin()/end()
        []
        支持比较运算,按字典序

    pair<int, int>
        first, 第一个元素
        second, 第二个元素
        支持比较运算,以first为第一关键字,以second为第二关键字(字典序)

    string,字符串
        szie()/length()  返回字符串长度
        empty()
        clear()
        substr(起始下标,(子串长度))  返回子串
        c_str()  返回字符串所在字符数组的起始地址

    queue, 队列
        size()
        empty()
        push()  向队尾插入一个元素
        front()  返回队头元素
        back()  返回队尾元素
        pop()  弹出队头元素

    priority_queue, 优先队列,默认是大根堆
        push()  插入一个元素
        top()  返回堆顶元素
        pop()  弹出堆顶元素
        定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q;

    stack,size()
        empty()
        push()  向栈顶插入一个元素
        top()  返回栈顶元素
        pop()  弹出栈顶元素

    deque, 双端队列
        size()
        empty()
        clear()
        front()/back()
        push_back()/pop_back()
        push_front()/pop_front()
        begin()/end()
        []

    set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列
        size()
        empty()
        clear()
        begin()/end()
        ++, -- 返回前驱和后继,时间复杂度 O(logn)

        set/multiset
            insert()  插入一个数
            find()  查找一个数
            count()  返回某一个数的个数
            erase()
                (1) 输入是一个数x,删除所有x   O(k + logn)
                (2) 输入一个迭代器,删除这个迭代器
            lower_bound()/upper_bound()
                lower_bound(x)  返回大于等于x的最小的数的迭代器
                upper_bound(x)  返回大于x的最小的数的迭代器
        map/multimap
            insert()  插入的数是一个pair
            erase()  输入的参数是pair或者迭代器
            find()
            []   时间复杂度是 O(logn)
            lower_bound()/upper_bound()

    unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表
        和上面类似,增删改查的时间复杂度是 O(1)
        不支持 lower_bound()/upper_bound(), 迭代器的++--

    bitset, 圧位
        bitset<10000> s;
        ~, &, |, ^
        >>, <<
        ==, !=
        []

        count()  返回有多少个1

        any()  判断是否至少有一个1
        none()  判断是否全为0

        set()  把所有位置成1
        set(k, v)  将第k位变成v
        reset()  把所有位变成0
        flip()  等价于~
        flip(k) 把第k位取反

        1. 树与图的存储
    树是一种特殊的图,与图的存储方式相同。
    对于无向图中的边ab,存储两条有向边a->b, b->a。
    因此我们可以只考虑有向图的存储。

    (1) 邻接矩阵:g[a][b] 存储边a->b

    (2) 邻接表:

        // 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
        int h[N], e[N], ne[N], idx;

        // 添加一条边a->b
        void add(int a, int b)
        {
            e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
        }

2. 树与图的遍历
    (1) 深度优先遍历
        int dfs(int u)
        {
            st[u] = true; // st[u] 表示点u已经被遍历过

            for (int i = h[u]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (!st[j]) dfs(j);
            }
        }

    (2) 宽度优先遍历

        queue<int> q;
        st[1] = true; // 表示1号点已经被遍历过
        q.push(1);

        while (q.size())
        {
            int t = q.front();
            q.pop();

            for (int i = h[t]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (!s[j])
                {
                    st[j] = true; // 表示点j已经被遍历过
                    q.push(j);
                }
            }
        }

3. 拓扑排序
    bool topsort()
    {
        int hh = 0, tt = -1;

        // d[i] 存储点i的入度
        for (int i = 1; i <= n; i ++ )
            if (!d[i])
                q[ ++ tt] = i;

        while (hh <= tt)
        {
            int t = q[hh ++ ];

            for (int i = h[t]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (-- d[j] == 0)
                    q[ ++ tt] = j;
            }
        }

        // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
        return tt == n - 1;
    }

    1. 朴素dijkstra算法

    int g[N][N];  // 存储每条边
    int dist[N];  // 存储1号点到每个点的最短距离
    bool st[N];   // 存储每个点的最短路是否已经确定

    // 求1号点到n号点的最短路,如果不存在则返回-1
    int dijkstra()
    {
        memset(dist, 0x3f, sizeof dist);
        dist[1] = 0;

        for (int i = 0; i < n - 1; i ++ )
        {
            int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
            for (int j = 1; j <= n; j ++ )
                if (!st[j] && (t == -1 || dist[t] > dist[j]))
                    t = j;

            // 用t更新其他点的距离
            for (int j = 1; j <= n; j ++ )
                dist[j] = min(dist[j], dist[t] + g[t][j]);

            st[t] = true;
        }

        if (dist[n] == 0x3f3f3f3f) return -1;
        return dist[n];
    }


2. 堆优化版dijkstra
    typedef pair<int, int> PII;

    int n;      // 点的数量
    int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
    int dist[N];        // 存储所有点到1号点的距离
    bool st[N];     // 存储每个点的最短距离是否已确定

    // 求1号点到n号点的最短距离,如果不存在,则返回-1
    int dijkstra()
    {
        memset(dist, 0x3f, sizeof dist);
        dist[1] = 0;
        priority_queue<PII, vector<PII>, greater<PII>> heap;
        heap.push({0, 1});      // first存储距离,second存储节点编号

        while (heap.size())
        {
            auto t = heap.top();
            heap.pop();

            int ver = t.second, distance = t.first;

            if (st[ver]) continue;
            st[ver] = true;

            for (int i = h[ver]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (dist[j] > distance + w[i])
                {
                    dist[j] = distance + w[i];
                    heap.push({dist[j], j});
                }
            }
        }

        if (dist[n] == 0x3f3f3f3f) return -1;
        return dist[n];
    }


3. Bellman-Ford算法
    int n, m;       // n表示点数,m表示边数
    int dist[N];        // dist[x]存储1到x的最短路距离

    struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
    {
        int a, b, w;
    }edges[M];

    // 求1到n的最短路距离,如果无法从1走到n,则返回-1。
    int bellman_ford()
    {
        memset(dist, 0x3f, sizeof dist);
        dist[1] = 0;

        // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
        for (int i = 0; i < n; i ++ )
        {
            for (int j = 0; j < m; j ++ )
            {
                int a = edges[j].a, b = edges[j].b, w = edges[j].w;
                if (dist[b] > dist[a] + w)
                    dist[b] = dist[a] + w;
            }
        }

        if (dist[n] == 0x3f3f3f3f) return -1;
        return dist[n];
    }


4. spfa 算法(队列优化的Bellman-Ford算法)
    int n;      // 总点数
    int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
    int dist[N];        // 存储每个点到1号点的最短距离
    bool st[N];     // 存储每个点是否在队列中

    // 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
    int spfa()
    {
        memset(dist, 0x3f, sizeof dist);
        dist[1] = 0;

        queue<int> q;
        q.push(1);
        st[1] = true;

        while (q.size())
        {
            auto t = q.front();
            q.pop();

            st[t] = false;

            for (int i = h[t]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (dist[j] > dist[t] + w[i])
                {
                    dist[j] = dist[t] + w[i];
                    if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                    {
                        q.push(j);
                        st[j] = true;
                    }
                }
            }
        }

        if (dist[n] == 0x3f3f3f3f) return -1;
        return dist[n];
    }


5. spfa判断图中是否存在负环
    int n;      // 总点数
    int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
    int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
    bool st[N];     // 存储每个点是否在队列中

    // 如果存在负环,则返回true,否则返回false。
    bool spfa()
    {
        // 不需要初始化dist数组
        // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

        queue<int> q;
        for (int i = 1; i <= n; i ++ )
        {
            q.push(i);
            st[i] = true;
        }

        while (q.size())
        {
            auto t = q.front();
            q.pop();

            st[t] = false;

            for (int i = h[t]; i != -1; i = ne[i])
            {
                int j = e[i];
                if (dist[j] > dist[t] + w[i])
                {
                    dist[j] = dist[t] + w[i];
                    cnt[j] = cnt[t] + 1;
                    if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                    if (!st[j])
                    {
                        q.push(j);
                        st[j] = true;
                    }
                }
            }
        }

        return false;
    }


6. floyd算法

    初始化:
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                if (i == j) d[i][j] = 0;
                else d[i][j] = INF;

    // 算法结束后,d[a][b]表示a到b的最短距离
    void floyd()
    {
        for (int k = 1; k <= n; k ++ )
            for (int i = 1; i <= n; i ++ )
                for (int j = 1; j <= n; j ++ )
                    d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    }

    1. prim算法
    int n;      // n表示点数
    int g[N][N];        // 邻接矩阵,存储所有边
    int dist[N];        // 存储其他点到当前最小生成树的距离
    bool st[N];     // 存储每个点是否已经在生成树中


    // 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
    int prim()
    {
        memset(dist, 0x3f, sizeof dist);

        int res = 0;
        for (int i = 0; i < n; i ++ )
        {
            int t = -1;
            for (int j = 1; j <= n; j ++ )
                if (!st[j] && (t == -1 || dist[t] > dist[j]))
                    t = j;

            if (i && dist[t] == INF) return INF;

            if (i) res += dist[t];
            st[t] = true;

            for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
        }

        return res;
    }


2. Kruskal算法
    int n, m;       // n是点数,m是边数
    int p[N];       // 并查集的父节点数组

    struct Edge     // 存储边
    {
        int a, b, w;

        bool operator< (const Edge &W)const
        {
            return w < W.w;
        }
    }edges[M];

    int find(int x)     // 并查集核心操作
    {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    int kruskal()
    {
        sort(edges, edges + m);

        for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

        int res = 0, cnt = 0;
        for (int i = 0; i < m; i ++ )
        {
            int a = edges[i].a, b = edges[i].b, w = edges[i].w;

            a = find(a), b = find(b);
            if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
            {
                p[a] = b;
                res += w;
                cnt ++ ;
            }
        }

        if (cnt < n - 1) return INF;
        return res;
    }


3. 染色法判别二分图
    int n;      // n表示点数
    int h[N], e[M], ne[M], idx;     // 邻接表存储图
    int color[N];       // 表示每个点的颜色,-1表示为染色,0表示白色,1表示黑色

    // 参数:u表示当前节点,father表示当前节点的父节点(防止向树根遍历),c表示当前点的颜色
    bool dfs(int u, int father, int c)
    {
        color[u] = c;
        for (int i = h[u]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (color[j] == -1)
            {
                if (!dfs(j, u, !c)) return false;
            }
            else if (color[j] == c) return false;
        }

        return true;
    }

    bool check()
    {
        memset(color, -1, sizeof color);
        bool flag = true;
        for (int i = 1; i <= n; i ++ )
            if (color[i] == -1)
                if (!dfs(i, -1, 0))
                {
                    flag = false;
                    break;
                }
        return flag;
    }


4. 匈牙利算法
    int n;      // n表示点数
    int h[N], e[M], ne[M], idx;     // 邻接表存储所有边
    int match[N];       // 存储每个点当前匹配的点
    bool st[N];     // 表示每个点是否已经被遍历过

    bool find(int x)
    {
        for (int i = h[x]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (!st[j])
            {
                st[j] = true;
                if (match[j] == 0 || find(match[j]))
                {
                    match[j] = x;
                    return true;
                }
            }
        }

        return false;
    }

    // 求最大匹配数
    int res = 0;
    for (int i = 1; i <= n; i ++ )
    {
        memset(st, false, sizeof st);
        if (find(i)) res ++ ;
    }

    1. 试除法判定质数
bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}


2. 试除法分解质因数
void divide(int x)
{
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            int s = 0;
            while (x % i == 0) x /= i, s ++ ;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}


3. 朴素筛法求素数
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;
        primes[cnt ++ ] = i;
        for (int j = i; j <= n; j += i)
            st[j] = true;
    }
}


4. 线性筛法求素数
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}


5. 试除法求所有约数
vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}


6. 约数个数和约数之和
    如果 N = p1^c1 * p2^c2 * ... *pk^ck
    约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)
    约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)


7. 欧几里得算法
int gcd(int a, int b)
{
    return b ? gcd(b, a % b) : a;
}


8. 求欧拉函数
int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}


9. 筛法求欧拉函数
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n)
{
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i])
        {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0)
            {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}


10. 快速幂
求 m^k mod p,时间复杂度 O(logk)int qmi(int m, int k, int p)
{
    int res = 1, t = m;
    while (k)
    {
        if (k&1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}


11. 扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1; y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a/b) * x;
    return d;
}

1. 高斯消元
   // a[N][N]是增广矩阵
   int gauss()
   {
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        for (int i = r; i < n; i ++ )   // 找到绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;


        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]);      // 将绝对值最大的行换到最顶端
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];      // 将当前上的首位变成1
        for (int i = r + 1; i < n; i ++ )       // 用当前行将下面所有的列消成0
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;
    }

    if (r < n)
    {
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2; // 无解
        return 1; // 有无穷多组解
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];

    return 0; // 有唯一解

   }


2. 递归法求组合数
   // c[a][b] 表示从a个苹果中选b个的方案数
   for (int i = 0; i < N; i ++ )
        for (int j = 0; j <= i; j ++ )
            if (!j) c[i][j] = 1;
            else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;


3. 通过预处理逆元的方式求组合数
   首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]
   如果取模的数是质数,可以用费马小定理求逆元
   int qmi(int a, int k, int p) // 快速幂模板
   {
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
   }

   // 预处理阶乘的余数和阶乘逆元的余数
   fact[0] = infact[0] = 1;
    for (int i = 1; i < N; i ++ )
    {
        fact[i] = (LL)fact[i - 1] * i % mod;
        infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
    }


4. Lucas定理
   若p是质数,则对于任意整数 1 <= m <= n,有:
    C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

   int qmi(int a, int k)        // 快速幂模板
   {
    int res = 1;
    while (k)
    {
        if (k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    return res;
   }


    int C(int a, int b)     // 通过定理求组合数C(a, b)
    {
        int res = 1;
        for (int i = 1, j = a; i <= b; i ++, j -- )
        {
            res = (LL)res * j % p;
            res = (LL)res * qmi(i, p - 2) % p;
        }
        return res;
    }


    int lucas(LL a, LL b)
    {
        if (a < p && b < p) return C(a, b);
        return (LL)C(a % p, b % p) * lucas(a / p, b / p) % p;
    }


5. 分解质因数法求组合数
   当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
    1. 筛法求出范围内的所有质数
    2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
    3. 用高精度乘法将所有质因子相乘

   int primes[N], cnt;      // 存储所有质数
   int sum[N];      // 存储每个质数的次数
   bool st[N];      // 存储每个数是否已被筛掉


   void get_primes(int n)       // 线性筛法求素数
   {
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
   }


    int get(int n, int p)       // 求n!中的次数
    {
        int res = 0;
        while (n)
        {
            res += n / p;
            n /= p;
        }
        return res;
    }


    vector<int> mul(vector<int> a, int b)       // 高精度乘低精度模板
    {
        vector<int> c;
        int t = 0;
        for (int i = 0; i < a.size(); i ++ )
        {
            t += a[i] * b;
            c.push_back(t % 10);
            t /= 10;
        }

        while (t)
        {
            c.push_back(t % 10);
            t /= 10;
        }

        return c;
    }

    get_primes(a);  // 预处理范围内的所有质数

    for (int i = 0; i < cnt; i ++ )     // 求每个质因数的次数
    {
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
    }

    vector<int> res;
    res.push_back(1);

    for (int i = 0; i < cnt; i ++ )     // 用高精度乘法将所有质因子相乘
        for (int j = 0; j < sum[i]; j ++ )
            res = mul(res, primes[i]);


6. 卡特兰数
   给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)

   NIM游戏
    给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

    我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。
    所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。
    NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

    定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ ... ^ An != 0


公平组合游戏ICG
    若一个游戏满足:
    1. 由两名玩家交替行动;
    2. 在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
    3. 不能行动的玩家判负;
    则称该游戏为一个公平组合游戏。
    NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。


有向图游戏
    给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
    任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。


Mex运算
    设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即:
        mex(S) = min{x}, x属于自然数,且x不属于S


SG函数
    在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, ..., yk,定义SG(x)为x的后继节点y1, y2, ..., yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:
        SG(x) = mex({SG(y1), SG(y2), ..., SG(yk)})
    特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。


有向图游戏的和
    设G1, G2, ..., Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, ..., Gm的和。
    有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即:
        SG(G) = SG(G1) ^ SG(G2) ^ ... ^ SG(Gm)


定理
    有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。
    有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。

作者:香草味羊扒饭
链接:https://www.acwing.com/blog/content/1655/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 二分法 5 1.1. 什么是二分查找 5 1.2. 如何识别二分法 5 1.3. 二分法模板 6 1.3.1. 模板一 6 1.3.1.1. 模板代码 6 1.3.1.2. 关键属性 7 1.3.1.3. 语法说明 7 1.3.1.4. Lc69:x的平方根 8 1.3.1.5. Lc374:猜数大小 9 1.3.1.6. Lc33:搜索旋转数组 11 1.3.2. 模板二 13 1.3.2.1. 模板代码 13 1.3.2.2. 关键属性 14 1.3.2.3. 语法说明 14 1.3.2.4. Lc278:第一个错误版本 14 1.3.2.5. Lc162:寻找峰值 16 1.3.2.6. Lc153:寻找旋转排序数组最小值 19 1.3.2.7. Lc154:寻找旋转排序数组最小值II 20 1.3.3. 模板三 22 1.3.3.1. 模板代码 22 1.3.3.2. 关键属性 23 1.3.3.3. 语法说明 23 1.3.3.4. LC-34:在排序数组中查找元素的第一个和最后一个 23 1.3.3.5. LC-658:找到K个最接近的元素 25 1.3.4. 小结 28 1.4. LeetCode中二分查找题目 29 2. 双指针 30 2.1. 快慢指针 31 2.1.1. 什么是快慢指针 31 2.1.2. 快慢指针模板 31 2.1.3. 快慢指针相关题目 32 2.1.3.1. LC-141:链表是否有环 32 2.1.3.2. LC-142:环形链表入口 34 2.1.3.3. LC-876:链表的中间节点 37 2.1.3.4. LC-287:寻找重复数 40 2.2. 滑动窗口 43 2.2.1. 什么是滑动窗口 43 2.1.4. 常见题型 44 2.1.5. 注意事项 45 2.1.6. 滑动窗口模板 45 2.1.7. 滑动窗口相关题目 46 2.1.7.1. LC-3:无重复字符的最长子串 47 2.1.7.2. LC-76:最小覆盖子串 49 2.1.7.3. LC-209:长度最小的子数组 54 2.1.7.4. LC-239:滑动窗口最大值 57 2.1.7.5. LC-395:至少有K个重复字符的最长子串 60 2.1.7.6. LC-567:字符串排列 62 2.1.7.7. LC-904:水果成篮 64 2.1.7.8. LC-424:替换后的最长重复字符 66 2.1.7.9. LC-713:乘积小于K的子数组 67 2.1.7.10. LC-992:K个不同整数的子数组 70 2.3. 左右指针 73 2.3.1. 模板 73 2.3.2. 相关题目 73 2.3.2.1. LC-76:删除倒数第N个节点 74 2.3.2.2. LC-61:旋转链表 76 2.3.2.3. LC-80:删除有序数组中的重复项 79 2.3.2.4. LC-86:分割链表 80 2.3.2.5. LC-438:找到字符串中所有字母的异位词 82 3. 模板 85 2.3.2.6. LC-76:删除倒数第N个节点 85

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值