CNN中stride(步幅)和padding(填充)的详细理解

网上一些解释,我觉还是有点不全面,我梳理一手:

步幅:卷积核经过输入特征图的采样间隔

填充:在输入特征图的每一边添加一定数目的行列,使得输出的特征图的长、宽 = 输入的特征图的长、宽

两个参数的核心:


设置步幅的目的:希望减小输入参数的数目,减少计算量

设置填充的目的:希望每个输入方块都能作为卷积窗口的中心

在边长=4的输入矩阵各边填充1层,全部填充0,采用边长=3的卷积核,全部卷积核的中心构成原输入

在这里插入图片描述

首先从一个问题入手:


问题:一个尺寸 a*a 的特征图,经过 b*b 的卷积层,步幅(stride)=c,填充(pad
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值