1.一个例子说明分岔
考虑一个半径为 a a a的光滑圆环,绕它的一根铅直直径以等角速度 ω \omega ω旋转。在圆环上有一个质量为 m m m的光滑小环。目标是求小环在大环上的位置。
θ \theta θ表示小圆环和竖直线的夹角。由于小环受大环的约束力 R R R必然是如图垂直于大环的方向,作用在小环上来的惯性力是水平方向,重力是铅直方向。作用在小环上的这三个力应当平衡。所以有
m a ω 2 sin θ m g = t g θ (1.1) \frac{ma\omega ^{2}\sin\theta }{mg}=tg\theta \tag{1.1} mgmaω2sinθ=tgθ(1.1)
即 sin θ ( a ω 2 g − 1 cos θ ) = 0 \sin\theta \left ( \frac{a\omega ^{2}}{g}-\frac{1}{\cos\theta } \right )=0 sinθ(gaω2−cosθ1)=0。
由这两个式子可以算出 θ \theta θ和 ω \omega