应用非线性动力学-第二章

本文介绍了非线性动力学中的基本概念,包括自由度和自治系统的定义。深入探讨了相轨线的概念,强调相轨线在相平面上的方向与时间无关。此外,详细讨论了平衡点的性质,区分了稳定和不稳定的平衡点,以及它们在相图中的表现。通过线性化分析平衡点附近的相轨迹,展示了不同矩阵B形式下的系统行为,如结点、鞍点和焦点等。
摘要由CSDN通过智能技术生成

2.1 几个基本概念

关于自由度

自由度数:完全描述该系统一切部位在任何瞬间的位置所需的独立坐标的数目。

单自由度系统:在任意时刻只要一个广义坐标即可完全确定其位置的系统。

多自由度系统:在任意时刻需要两个或更多的广义坐标才能完全确定其位置的系统。

关于自治系统

  对于一个微分系统 x ˙ = f ( x , t ) \dot{x}=f(x,t) x˙=f(x,t), f f f称为系统的向量场,对于这个微分系统:

(1)若此系统中 f f f t t t无关,或者说 f f f中不显含时间变量 t t t,则系统 x ˙ = f ( x , t ) \dot{x}=f(x,t) x˙=f(x,t)称为自治系统;

(2)否则,若此中 f f f显含时间变量 t t t,则系统 x ˙ = f ( x , t ) \dot{x}=f(x,t) x˙=f(x,t)称为非自治系统。

  对于一个单自由度自治系统
u ¨ ( t ) + p ( u ( t ) , u ˙ ( t ) ) = 0 (2.1.1) \ddot{u}(t) +p(u(t),\dot{u}(t))=0 \tag{2.1.1} u¨(t)+p(u(t),u˙(t))=0(2.1.1)可知一个关于自治系统的基本性质:对于时间坐标 t t t的平移,系统的运动微分方程形式保持不变。因此本文中做出约束:今后一般不再写出时间变量,并取系统的初始时刻为 t = 0 t=0 t=0

2.1.1 相轨线(相轨迹)

  用系统位移和速度组成二维状态向量 u = d e f [ u 1 u 2 ] = d e f [ u u ˙ ] (2.1.2) \bm{u} \overset{def}{=} \begin{bmatrix} u_1 \\ u_2 \\ \end{bmatrix} \overset{def}{=}\begin{bmatrix} u \\ \dot{u}\\ \end{bmatrix} \tag{2.1.2} u=def[u1u2]=def[uu˙](2.1.2)将方程 ( 2.1.1 ) (2.1.1) (2.1.1)改写为
u ˙ = d e f [ u ˙ 1 u ˙ 2 ] = d e f [ u u ˙ ] = f ( u ) (2.1.3) \bm{\dot{u}} \overset{def}{=} \begin{bmatrix} \dot{u}_1 \\ \dot{u}_2 \\ \end{bmatrix} \overset{def}{=}\begin{bmatrix} u \\ \dot{u}\\ \end{bmatrix}=\bm{f(u)} \tag{2.1.3} u˙=def[u˙1u˙2]=def[uu˙]=f(u)(2.1.3)其中二维向量函数 f ( u ) = d e f [ f 1 ( u 1 , u 2 ) f 2 ( u 1 , u 2 ) ] = d e f [ u 2 − p ( u 1 , u 2 ) ] (2.1.4) \bm{f(u)} \overset{def}{=} \begin{bmatrix} f_1(u_1,u_2) \\ f_2(u_1,u_2) \\ \end{bmatrix} \overset{def}{=}\begin{bmatrix} u_2 \\ -p(u_1,u_2) \\ \end{bmatrix}\tag{2.1.4} f(u)=def[f1(u1,u2)f2(u1,u2)]=def[u2p(u1,u2)](2.1.4)称作微分方程 ( 2.1.3 ) (2.1.3) (2.1.3)向量场。给定初始条件以后,方程 ( 2.1.3 ) (2.1.3) (2.1.3)的解 u 1 ( t ) u_1(t) u1(t) u 2 ( t ) u_2(t) u2(t) t t t是平面上随时间增加而演化的一条积分曲线。通常,称 ( u 1 , u 2 ) (u_1,u_2) (u1,u2)平面为相平面,称上述解曲线为相轨线,称相轨线的全体为相图
   ( 2.1.4 ) (2.1.4) (2.1.4)消去 d t dt dt,得到相轨线的切方向 d u 2 d u 1 = f 2 ( u 1 , u 2 ) f 1 ( u 1 , u 2 ) = − p ( u 1 , u 2 ) u 2 (2.1.5) \frac{\mathrm{d}u_2}{\mathrm{d}u_1}=\frac{f_2(u_1,u_2)}{f_1(u_1,u_2)}=-\frac{p(u_1,u_2)}{u_2} \tag{2.1.5} du1du2=f1(u1,u2)f2(u1,u2)=u2p(u1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值