mysql索引初识

本文介绍了MySQL索引的基本概念,详细比较了二叉树、红黑树、HASH表、B-tree和B+树等数据结构的特点,强调了B+树在实际数据库中的广泛应用,以及如何根据业务需求选择合适的索引类型。
摘要由CSDN通过智能技术生成

mysql索引初识



mysql索引是什么

索引是一种帮助数据库提高查询效率的一种排好序的数据结构


一、索引的数据结构

二叉树,红黑树,HASH表,B-tree,B+ -tree(实际数据库使用频繁最多的索引数据结构)

二、对比各个索引数据结构的特点

1.二叉树

在这里插入图片描述
特点:每一个节点的左子树都小于当前节点,右子树都大于当前节点
缺点:
1.存在极端情况,节点在不断增加,修改,删除,导致二叉树存储出现大量倾斜,即左子树不存储,节点都大量存储在右子树上面,查询复杂度基本等于全表扫描,查询效率很差
例:
在这里插入图片描述

2.存储的数据过多之后,二叉树的深度也随之变多,查询要IO的次数就更多,查询效率变差

2.红黑树(二叉平衡树)

特点:
1.任意节点的左子树均小于当前节点,右子树均大于当前节点
2.二叉树的升级,可以通过左右旋来降低树的高度,减少IO

3.HASH表

在这里插入图片描述
索引直接根据哈希值运算索引列成HASH值存储
优点:
1.hash索引存储空间占用小
2.不出现哈希值大量碰撞情况下,一般查询效率高于B+tree,因为只需要做一次hash计算
缺点:
1.可能存在极端情况,大量数据哈希碰撞,导致特定查询条件下面,哈希表后面链表数据过多,查询效率变慢
2.因为哈希值无法排序,所以哈希索引只能支持where = ,不支持范围查找
3.哈希索引的更新操作比较费时间

3.B-tree

4.B+ -tree(实际数据库使用频繁最多的索引数据结构)

在这里插入图片描述
特点:
1.非叶子节点只存储索引(冗余索引),可以存放更多的索引,叶子节点会存储具体的数据
优点:
1,所有查询都要落到叶子节点,且因叶子节点都是排好序的,中间均有双链结构,可以支持范围查找,查询深度也没有那么多,查询效率较高


总结

实际建立索引要根据数据结构的特点,针对不同的业务去确定要选取哪种数据结构作为索引,其中B+tree原理要深刻掌握,面试种该索引的数据结构是面试官最经常考察的点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值