mysql索引初识
文章目录
mysql索引是什么
索引是一种帮助数据库提高查询效率的一种排好序的数据结构
一、索引的数据结构
二叉树,红黑树,HASH表,B-tree,B+ -tree(实际数据库使用频繁最多的索引数据结构)
二、对比各个索引数据结构的特点
1.二叉树
特点:每一个节点的左子树都小于当前节点,右子树都大于当前节点
缺点:
1.存在极端情况,节点在不断增加,修改,删除,导致二叉树存储出现大量倾斜,即左子树不存储,节点都大量存储在右子树上面,查询复杂度基本等于全表扫描,查询效率很差
例:
2.存储的数据过多之后,二叉树的深度也随之变多,查询要IO的次数就更多,查询效率变差
2.红黑树(二叉平衡树)
特点:
1.任意节点的左子树均小于当前节点,右子树均大于当前节点
2.二叉树的升级,可以通过左右旋来降低树的高度,减少IO
3.HASH表
索引直接根据哈希值运算索引列成HASH值存储
优点:
1.hash索引存储空间占用小
2.不出现哈希值大量碰撞情况下,一般查询效率高于B+tree,因为只需要做一次hash计算
缺点:
1.可能存在极端情况,大量数据哈希碰撞,导致特定查询条件下面,哈希表后面链表数据过多,查询效率变慢
2.因为哈希值无法排序,所以哈希索引只能支持where = ,不支持范围查找
3.哈希索引的更新操作比较费时间
3.B-tree
4.B+ -tree(实际数据库使用频繁最多的索引数据结构)
特点:
1.非叶子节点只存储索引(冗余索引),可以存放更多的索引,叶子节点会存储具体的数据
优点:
1,所有查询都要落到叶子节点,且因叶子节点都是排好序的,中间均有双链结构,可以支持范围查找,查询深度也没有那么多,查询效率较高
总结
实际建立索引要根据数据结构的特点,针对不同的业务去确定要选取哪种数据结构作为索引,其中B+tree原理要深刻掌握,面试种该索引的数据结构是面试官最经常考察的点