矩阵A的特征向量和特征值求解

本文介绍了如何求解n乘n方阵A的特征向量和特征值。通过公式(A-λI)x=0和det(A-λI)=0,可以找出使等式成立的特征值λ,进而计算对应的特征向量。以2维方阵为例,展示了计算过程,包括解二次方程得到λ,并根据λ求解特征向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知:

矩阵 A A A:n乘n的方阵 (square matrix)
x x x:n维特征向量
标量 λ λ λ:特征值

A x = λ x Ax={\lambda}x Ax=λx,目的是找到使两边相等的 x x x
这意味着,对于特征向量 x x x,矩阵 A A A的应用只会拉伸或缩放其长度 λ λ λ倍,而不改变其方向。

求解:

( A − λ I ) x = 0 (A - \lambda I) x = 0 (AλI)x=0

计算行列式来测试矩阵运算是否会得到0。

d e t ( A − λ I ) = 0 det(A - \lambda I)=0 det(AλI)=0

2维方阵的例子:

假设 A = [ a b c d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值