拉格朗日对偶

拉格朗日乘子

拉格朗日乘子和拉格朗日对偶问题是优化问题中的一种优化技巧。
根据不同的优化约束条件,优化问题可以分为无约束条件的优化和有约束条件的优化。
对于无约束条件的优化问题:
m i n x ∈ R n f ( x ) min_{x \in R^n} f(x) minxRnf(x)
如果f(x)连续可微,只需要对f(x)求导,令导数为0,即可得到最优解。

那么有约束条件又是什么情况呢?
m i n x ∈ R n f ( x ) min_{x \in R^n} f(x) minxRnf(x) s . t . h i ( x ) ≤ 0 , c j ( x ) = 0 s.t. h_i(x) \leq 0,c_j(x)=0 s.t.hi(x)0,cj(x)=0 此时,引入拉格朗日乘子,该优化问题等同于:
m i n x , α ≥ 0 , β { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } min_{x ,\alpha \geq 0, \beta} \{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} minx,α0,β{f(x)+imαihi(x)+jnβjcj(x)} α \alpha α要求大于等于0,因为 h i ( x ) h_i(x) hi(x)具有方向性。
为什么引入拉格朗日乘子之后的优化问题与原问题是等价的呢?
因为 h i ( x ) ≤ 0 h_i(x) \leq 0 hi(x)0, 如果 h i ( x ) &lt; 0 h_i(x) &lt; 0 hi(x)<0, 只需要令 α i = 0 \alpha_i = 0 αi=0,如果 h i ( x ) = 0 h_i(x) = 0 hi(x)=0, 则 α i \alpha_i αi可以为任意数,而 c j ( x ) = 0 c_j(x)=0 cj(x)=0,通过控制 α i \alpha_i αi的值,可以使:
f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) = f ( x ) f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x) = f(x) f(x)+imαihi(x)+jnβjcj(x)=f(x)
这是一种直觉上的解释,知乎回答从几何上解释了KKT条件和拉格朗日乘子为什么是这个形式,主要是因为 f ( x ) f(x) f(x) h ( x ) h(x) h(x)在最小值处满足 f ( x ) f(x) f(x) h ( x ) h(x) h(x)的梯度共线,称为拉格朗日条件。

拉格朗日对偶

我们初始的优化目标为:
L ( x , α , β ) = m i n x , α ≥ 0 , β { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } L(x,\alpha,\beta)=min_{x,\alpha \geq 0,\beta} \{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} L(x,α,β)=minx,α0,β{f(x)+imαihi(x)+jnβjcj(x)}该目标函数中一共有三个变量 x x x α \alpha α β \beta β,优化该问题时,对所有的变量求导,并令其导数为0,然后利用消元法求解所有变量。从这个角度来说,我理解的拉格朗日原问题和对偶问题的区别在于,是先对x求导,用 α \alpha α β \beta β表示x便于计算还是先对 α \alpha α β \beta β求导,用x表示 α \alpha α β \beta β便于计算。

原问题

原问题先固定x值,优化 α \alpha α β \beta β,再固定 α \alpha α β \beta β,优化x:
L ( x , α , β ) = m i n x m a x α , β { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } L(x,\alpha,\beta)=min_x max_{\alpha,\beta}\{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} L(x,α,β)=minxmaxα,β{f(x)+imαihi(x)+jnβjcj(x)}为什么是 m a x α , β max_{\alpha,\beta} maxα,β呢?
l ( α , β ) = m a x α , β { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } l(\alpha,\beta)= max_{\alpha,\beta}\{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} l(α,β)=maxα,β{f(x)+imαihi(x)+jnβjcj(x)} 此时如果 h i ( x ) h_i(x) hi(x) c j ( x ) c_j(x) cj(x)满足条件,即 h i ( x ) ≤ 0 h_i(x) \leq 0 hi(x)0 c j ( x ) = 0 c_j(x)=0 cj(x)=0,如果 h i ( x ) &lt; 0 h_i(x)&lt;0 hi(x)<0,只需要 α i ( x ) = 0 \alpha_i(x)=0 αi(x)=0
l ( α , β ) = f ( x ) l(\alpha,\beta)=f(x) l(α,β)=f(x)
如果 h i ( x ) h_i(x) hi(x) c j ( x ) c_j(x) cj(x)不满足条件, l ( α , β ) = + ∞ l(\alpha,\beta)=+\infty l(α,β)=+,即:
l ( α , β ) = { m i n x f ( x ) α β 满足条件 + ∞ 其他 l(\alpha,\beta)= \begin{cases} min_xf(x)&amp;\alpha\beta \text{满足条件}\\ +\infty&amp; \text{其他} \end{cases} l(α,β)={minxf(x)+αβ满足条件其他
所有拉格朗日原问题可以表示为:
L p ( x , α , β ) = m i n x m a x α ≥ 0 , β { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } L_p(x,\alpha ,\beta)=min_x max_{\alpha \geq 0,\beta}\{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} Lp(x,α,β)=minxmaxα0,β{f(x)+imαihi(x)+jnβjcj(x)}

对偶问题

对偶问题表示为:
L d ( x , α , β ) = m a x α ≥ 0 , β m i n x { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } L_d(x,\alpha ,\beta)=max_{\alpha \geq 0,\beta}min_x \{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} Ld(x,α,β)=maxα0,βminx{f(x)+imαihi(x)+jnβjcj(x)}
对任意的x, α \alpha α, β \beta β:
m i n x { f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) } min_x \{f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x)\} minx{f(x)+imαihi(x)+jnβjcj(x)} ≤ f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) \leq f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x) f(x)+imαihi(x)+jnβjcj(x) ≤ m a x α , β f ( x ) + ∑ i m α i h i ( x ) + ∑ j n β j c j ( x ) \leq max_{\alpha,\beta}f(x) + \sum_i^m \alpha_i h_i(x)+\sum_j^n\beta_jc_j(x) maxα,βf(x)+imαihi(x)+jnβjcj(x)
L d ( x , α , β ) ≤ L p ( x , α , β ) L_d(x,\alpha ,\beta) \leq L_p(x,\alpha ,\beta) Ld(x,α,β)Lp(x,α,β),对偶问题是原问题的最大下界。

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值