拉格朗日对偶问题

一、直观理解拉格朗日乘数法

  1. 只有一个约束条件

image-20220406194958329

能发现,只有当目标函数f(x, y)的梯度方向和约束条件的梯度方向相反时,通过调整 λ \lambda λ才可以使拉格朗日函数对x和y的偏导为0

  1. 有多个约束条件

image-20220406195318701

真正起贡献的梯度其实只有其中两个约束条件的梯度,最后的式子变为下式:

image-20220406195632122

所有的 λ i \lambda_i λi都是大于等于0的:

  • 如果 λ i = 0 \lambda_i=0 λi=0,那么对应的约束条件 g i ( x ) g_i(x) gi(x)是松弛的(约束条件 g i ( x ) g_i(x) gi(x)没有起到作用)
  • 如果 λ i > 0 \lambda_i\gt0 λi>0,那么对应的约束条件 g i ( x ) g_i(x) gi(x)是紧致的(约束条件 g i ( x ) g_i(x) gi(x)起了作用)
  1. 目标函数的最小值在可行域内

image-20220406200150361

此时,所有的约束条件都是松弛的

二、拉格朗日乘数法的不足

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VelvetQuilt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值