一、直观理解拉格朗日乘数法
- 只有一个约束条件
能发现,只有当目标函数f(x, y)的梯度方向和约束条件的梯度方向相反时,通过调整 λ \lambda λ才可以使拉格朗日函数对x和y的偏导为0
- 有多个约束条件
真正起贡献的梯度其实只有其中两个约束条件的梯度,最后的式子变为下式:
所有的 λ i \lambda_i λi都是大于等于0的:
- 如果 λ i = 0 \lambda_i=0 λi=0,那么对应的约束条件 g i ( x ) g_i(x) gi(x)是松弛的(约束条件 g i ( x ) g_i(x) gi(x)没有起到作用)
- 如果 λ i > 0 \lambda_i\gt0 λi>0,那么对应的约束条件 g i ( x ) g_i(x) gi(x)是紧致的(约束条件 g i ( x ) g_i(x) gi(x)起了作用)
- 目标函数的最小值在可行域内
此时,所有的约束条件都是松弛的