母线保护(4)

4、母联死区保护

在各种母差保护中,存在一个共同的问题,就是死区问题。

如图,在母联合位时,当故障发生在母联断路器与母联CT之间时,故障电流由II母流向I母,I母小差有差流,判断为I母故障,母差保护动作跳开I母及母联。此时故障仍然存在,II母小差无差流,从而形成了母差保护的死区,无法切除故障。

为了快速切除死区内的故障,母线保护中设置了死区保护,逻辑框图如下。可以看出,当I母(或II母)母差动作后,母联断路器被跳开,但故障为切除,母联CT仍有电流,死区保护动作,经延时跳II母(或I母)上连接的各断路器。

5、母联失灵保护

母线保护或其他有关保护动作,母联断路器出口继电器触电闭合,但母联CT二次仍有流,即判为母联断路器失灵,启动母联失灵保护。母联失灵保护动作后,需要经过两条母线的复压闭锁元件。若复压闭锁元件开放,经短延时(0.2~0.3S)切除两条母线上所有连接元件。

上面说的母线保护,通常指的是母差保护、充电保护或母联过流保护起动母联失灵保护。

其他有关保护通常包括线路保护、变压器保护、发电器保护等,可以根据“投外部起动母联失灵”控制字来决定是否通过外部保护启动母联失灵保护。母联失灵保护逻辑框图如图:

6、断路器失灵保护

线路发生故障时,若该线路断路器失灵,则需要有母线保护跳开该线路所在母线上的所有断路器。

断路器失灵保护由四部分构成:起动回路、失灵判别元件、动作延时元件、负压闭锁元件。

断路器失灵保护应用于连接到母线上的所有支路。当母线所连的某断路器失灵时,由该线路或元件的失灵起动装置提供一个失灵起动接点给母线保护装置。装置检测到某一失灵起动接点闭合后,起动断路器失灵保护。

断路器失灵保护动作后,宜无延时再次跳开断路器。然后比较短延时(0.2~0.3s)跳开母联,再经另一较长延时(0.5s)跳开与失灵断路器连接在同一母线上的其他断路器。断路器失灵保护动作后,应闭锁有关线路的重合闸。

7、母线保护与其他保护的配合

由于母线保护关联到母线上的所有出现元件,因此,在设计母线保护时,应考虑与其他保护的配合问题。

(1)母差保护动作后,对于闭锁式纵联保护,本侧收发信机应停信,使对侧迅速跳闸。

(2)母线保护动作后,为防止线路断路器对故障母线进行重合,应闭锁线路重合闸。

(3)母线保护动作后,应立即去启动失灵保护。这是为了在母线发生故障时母联断路器失灵,或故障点发生在死区时,失灵保护能迅速可靠的切除故障。

(4)母线保护故障后,对于线路纵差保护,应发远跳命令去切除对侧断路器。

(5)主变非电量保护不应起动母线失灵保护,只是因为非电量保护动作后不能快速自动返回,容易造成失灵保护误动。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电气秃头大叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值