逻辑回归(LR)理解及复习

本文主要是对LR的复习,把LR知识结构化,温故而知新~

LR分类过程

1、LR的假设函数

LR假设函数

P ( y = 1 ∣ x ) = 1 1 + e − w T x P(y=1|x) = \frac{1}{1+e^{-w^Tx}} P(y=1x)=1+ewTx1

sigmoid函数的理解

关于LR为什么用sigmoid函数,总共有两个理解:

1、从对数几率logit角度理解:

  • 在统计学中,概率和odds都是用于描述某件事情发生的可能性
  • 概率、odds的取值范围是在 [0,1] 之间,针对odds取对数,logit模型的取值范围是在 [ − ∞ , + ∞ ] [-\infty, +\infty] [,+] 之间
  • logit模型刚好同线性回归模型 w T x w^Tx wTx 取值范围相对应
  • 所以用logit模型对预测事件发生的概率进行建模

2、从sigmoid函数角度理解:

  • 自变量为0时,预测值刚好为0.5
  • 自变量越大,预测值越接近1
  • 自变量越小,预测值越接近0

2、LR的损失函数

最大似然估计

LR的损失函数主要根据最大似然估计推导来

1、最大似然估计:

  • 已知样本x,y信息,反推最大概率导致这样样本结果的模型参数

2、最大似然函数的推导(这里在线下写了,就不详细用latex写了,文章的主要目的是建立LR的知识结构)

3、LR梯度下降

LR梯度下降公式推导(略)

LR数据特征使用归一化的好处

  • 加速梯度下降:当不用归一化时,损失函数的等值线为椭圆形,进行梯度下降速度慢;使用归一化后,损失函数等值线为圆形,每次都朝着圆心的方向前进,速度快

LR优缺点分析

数据层面

数据量

  • 实施简单,非常高效(计算量小、存储占用低),可以在大数据场景中使用

异常值/缺失值

  • 缺失值:需要手动补充,不像Xgboost可以直接处理缺失值
  • 异常值:因为曲线尽可能保证每一个样本分类正确,对异常值敏感

特征层面

  • LR没有像DNN自动进行特征工程的部分,只能人工构造交叉特征,特征表达能力较差

拟合层面

  • LR只能表达模型的线性关系,容易欠拟合, 精度不高

工程部署层面

  • LR模型简单,可解释性强
  • 可以使用online learning的方式更新轻松更新参数,不需要重新训练整个模型

参考资料

1、 https://zhuanlan.zhihu.com/p/27188729

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值