【文献阅读笔记】Robust continuous clustering

这篇文章介绍了一种新的聚类算法RCC,它特别设计用于处理高维和大规模数据集,通过引入连接关系和正则化惩罚,有效解决了现有聚类算法在高维空间中的局限性。算法包括优化步骤和目标函数,通过交替迭代最小化来更新表示和连接关系。
摘要由CSDN通过智能技术生成

标题(paper):Robust continuous clustering

期刊 + 时间 + 有无源代码: Proceedings of the National Academy of Sciences of the United States of America (PNAS) + 2017 + 没收集

作者: Sohil Atul Shaha, and Vladlen Koltun

方法名及缩写: robust continuous clustering (RCC)

算法框架:在这里插入图片描述

流程图 :

主要创新点: 提出了可以处理高维数据和大规模数据集的聚类算法

动机: 现有的聚类算法在高维上的有效性有限,并且通常需要针对不同的领域和数据集调整参数。

目标函数: RCC
C ( U , L ) = 1 2 ∑ i = 1 n ∥ x i − u i ∥ 2 2 + λ 2 ∑ ( p , q ) ∈ E w p , q ( l p , q ∥ u p − u q ∥ 2 2 + Ψ ( l p , q ) ) \begin{aligned} \mathbf{C}(\mathbf{U},\mathbb{L})& =\frac12\sum_{i=1}^n\|\mathbf{x}_i-\mathbf{u}_i\|_2^2 \\ &+\frac\lambda2\sum_{(p,q)\in\mathcal{E}}w_{p,q}\bigg(l_{p,q}\|\mathbf{u}_{p}-\mathbf{u}_{q}\|_{2}^{2}+\Psi(l_{p,q})\bigg) \end{aligned} C(U,L)=21i=1nxiui22+2λ(p,q)Ewp,q(lp,qupuq22+Ψ(lp,q))
w p , q \mathcal{w}_{p,q} wp,q λ \lambda λ是权重, E \mathcal{E} E是图的边集(m-kNN构图), ρ ( ) \rho() ρ()是正则化惩罚项。 x x x是样本, u u u是对应样本的表示

为了便于优化:引入 l p , q l_{p,q} lp,q描述每一个 ( p , q ) (p,q) p,q的连接关系
C ( U , L ) = 1 2 ∑ i = 1 n ∥ x i − u i ∥ 2 2 + λ 2 ∑ ( p , q ) ∈ E w p , q ( l p , q ∥ u p − u q ∥ 2 2 + Ψ ( l p , q ) ) \begin{aligned} \mathbf{C}(\mathbf{U},\mathbb{L})& =\frac12\sum_{i=1}^n\|\mathbf{x}_i-\mathbf{u}_i\|_2^2 \\ &+\frac\lambda2\sum_{(p,q)\in\mathcal{E}}w_{p,q}\bigg(l_{p,q}\|\mathbf{u}_{p}-\mathbf{u}_{q}\|_{2}^{2}+\Psi(l_{p,q})\bigg) \end{aligned} C(U,L)=21i=1nxiui22+2λ(p,q)Ewp,q(lp,qupuq22+Ψ(lp,q))
Ψ ( l p , q ) \Psi(l_{p,q}) Ψ(lp,q)是忽略连接 ( p , q ) (p,q) (p,q)的惩罚:当 l p , q → 1 l_{p,q} \to1 lp,q1时(点连) Ψ ( l p , q ) = 0 \Psi(l_{p,q})=0 Ψ(lp,q)=0

l p , q → 0 l_{p,q} \to 0 lp,q0(点不连)时 Ψ ( l p , q ) = 1 \Psi(l_{p,q})=1 Ψ(lp,q)=1.
ρ ( y ) = μ y 2 μ + y 2 , \rho(y)=\frac{\mu y^2}{\mu+y^2}, ρ(y)=μ+y2μy2,

Ψ ( l p , q ) = μ ( l p , q − 1 ) 2 \Psi(l_{p,q})=\mu\Big(\sqrt{l_{p,q}}-1\Big)^2 Ψ(lp,q)=μ(lp,q 1)2

RCC-DR
C ( U , Z , D ) = ∥ X − D Z ∥ 2 2 + γ ∑ i = 1 n ∥ z i ∥ 1 + ν ( ∑ i = 1 n ∥ z i − u i ∥ 2 2 + λ 2 ∑ ( p , q ) ∈ E w p , q ρ ( ∥ u p − u q ∥ 2 ) ) \begin{aligned}\mathbf{C}(\mathbf{U},\mathbf{Z},\mathbf{D})&=\|\mathbf{X}-\mathbf{D}\mathbf{Z}\|_2^2+\gamma\sum_{i=1}^n\|\mathbf{z}_i\|_1\\&+\nu\left(\sum_{i=1}^n\|\mathbf{z}_i-\mathbf{u}_i\|_2^2+\frac\lambda2\sum_{(p,q)\in\mathcal{E}}w_{p,q}\rho\left(\|\mathbf{u}_p-\mathbf{u}_q\|_2\right)\right)\end{aligned} C(U,Z,D)=XDZ22+γi=1nzi1+ν i=1nziui22+2λ(p,q)Ewp,qρ(upuq2)
优化步骤: 交替迭代最小化

更新 l p , q l_{p,q} lp,q
l p , q = ( μ μ + ∥ u p − u q ∥ 2 2 ) 2 . l_{p,q}=\left(\frac\mu{\mu+\|\mathbf{u}_p-\mathbf{u}_q\|_2^2}\right)^2. lp,q=(μ+upuq22μ)2.
更新 U U U:
arg ⁡ min ⁡ 1 2 ∥ X − U ∥ F 2 + λ 2 ∑ ( p , q ) ∈ E w p , q l p , q ∥ U ( e p − e q ) ∥ 2 2 , \arg\min\frac12\|\mathbf{X}-\mathbf{U}\|_F^2+\frac\lambda2\sum_{(p,q)\in\mathcal{E}}w_{p,q}l_{p,q}\|\mathbf{U}(\mathbf{e}_p-\mathbf{e}_q)\|_2^2, argmin21XUF2+2λ(p,q)Ewp,qlp,qU(epeq)22,
这里是吧原问题进行简化,后面有详细求解,不想看了,感兴趣可以查原论文。

注解:(优缺点 + 随便想记的内容 )

1、没看太明白

2、RCC-DR的优化不想看了

  • 19
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值