Ubuntu18.04 + RTX3090安装tensorflow-GPU1.15.4

因为RTX3090只支持cuda11.0+的版本,无法配置tensorflow1.×环境。好在NVIDIA一直在维护一个1.15版本的nvidia-tensorflow可以使用在30系显卡上。安装步骤如下:

准备工作

anaconda(推荐),当前Driver Version: 470.161.03(参考)

1. conda创建虚拟环境

conda create --name tf1.15 python=3.6
conda activate tf1.15

2. 安装tensorflow wheel的索引

pip install nvidia-pyindex

3. 安装tensorflow-GPU

pip install nvidia-tensorflow==1.15.4

亲测1.15.4可用,若不指定版本默认安装1.15.5,GPU不能正常运行。
上面2个命令行可能无法一次性安装成功的,可以多试几次。

4. 测试tensorflow-GPU是否安装成功

依次输入pythonimport tensorflow as tftf.__version__tf.test.is_gpu_available(),查看tensorflow版本并测试GPU能否正常运行。
请添加图片描述

参考

【1】无需源码编译 | 基于RTX3090配置tensorflow1.15环境
【2】RTX3080+Ubuntu18.04+cuda11.1+cudnn8.0.4+TensorFlow1.15.4+PyTorch1.7.0环境配置
【3】https://developer.nvidia.com/blog/accelerating-tensorflow-on-a100-gpus/

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值