3090 搭建conda虚拟环境TensorFlow+pytorch(自用)

本文介绍了如何在配备3090显卡的服务器上,利用Anaconda创建虚拟环境,并安装配置TensorFlow与PyTorch深度学习框架。通过具体的命令行操作步骤,实现了Python 3.8环境下对GPU的支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用3090显卡的服务器上,搭建TensorFlow和pytorch环境

首先,在anaconda创建虚拟环境,本次实验的Python语言版本为3.8

conda create -n sum python=3.8

进行安装TensorFlow操作

conda install tensorflow-gpu

conda list显示如下

进行安装pytorch操作,一般安装pytorch需要访问pytorch官网,这里直接放出适合3090显卡物理驱动的安装语言

pip install torch===1.7.1+cu110 torchvision===0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

conda list显示如下

 

分别测试能否使用gpu

import tensorflow as tf
tf.config.list_physical_devices('GPU')
import torch
print(torch.cuda.is_available())

### 使用 Conda 创建虚拟环境并安装 PyTorch #### 虚拟环境的创建 可以通过 `conda` 命令来创建一个新的虚拟环境,并指定 Python 版本。以下是具体的命令: ```bash conda create -n EnvName python=3.8 ``` 此命令会创建一个名为 `EnvName` 的新虚拟环境,并设置 Python 的版本为 3.8[^2]。 #### 激活虚拟环境 一旦虚拟环境被成功创建,可以使用以下命令将其激活: ```bash conda activate EnvName ``` 这里的 `EnvName` 是之前定义的虚拟环境名称。如果是在 Linux 或 macOS 下操作,也可以参考类似的语法[^3]。 #### 安装 PyTorch 在激活的虚拟环境中,可以根据需求选择合适的 PyTorch 版本进行安装。推荐访问官方 PyTorch 网站 (https://pytorch.org/) 获取最新的安装指令。通常情况下,对于 CUDA 支持或者 CPU-only 的配置如下所示: ##### 对于支持 CUDA 的 GPU 加速: 运行以下命令以安装带有 CUDA 支持的 PyTorch: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 这将安装适合 CUDA Toolkit 11.3 的 PyTorch 及其依赖项[^1]。 ##### 如果仅需 CPU 支持: 则可执行下面的命令: ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` 这条命令适用于不需要 GPU 加速的情况,只会在 CPU 上运行 PyTorch。 #### 验证安装 完成上述步骤之后,可以在 Python 中验证 PyTorch 是否正常工作: ```python import torch print(torch.__version__) print(torch.cuda.is_available()) ``` 这段代码用于确认当前使用的 PyTorch 版本以及是否有可用的 CUDA 设备。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值