组合数学——数三角形

这篇博客探讨了如何在n×m的网格中计算所有顶点位于格点上的三角形数量。通过分析不同斜率的情况,如共线、斜率为正或负,提出了一种解决方案。涉及到了组合数学中的组合公式,并提到了排除不满足条件的三角形,如斜率为0或正无穷的列或行三角形。同时,解释了当斜率为正时,可以通过确定一个角的格点位置来计算其他点的可能性,利用欧几里得除法的最简公倍数(gcd)来确定直线上的格点数。最后,指出斜率为正的方案数量乘以2即为斜率为负的方案数,因为存在对称性。
摘要由CSDN通过智能技术生成

数三角形

给定一个 n×m 的网格,请计算三点都在格点上的三角形共有多少个。

下图为 4×4 的网格上的一个三角形。

在这里插入图片描述
注意:三角形的三点不能共线。

输入格式
输入一行,包含两个空格分隔的正整数 m 和 n。

输出格式
输出一个正整数,为所求三角形数量。

数据范围
1 ≤ m , n ≤ 1000 1≤m,n≤1000 1m,n1000
输入样例:
2 2
输出样例:
76

题解:

思路是先在所有格点上找3个点出来无论能不能组成三角形,然后再找出所有不满足的情况,再减去。
然后我们分析下有哪些不满足的。首先斜率和0或正无穷的情况就是三个点都在列或者一行。那么他们的情况就是 m ∗ C n 3 + n ∗ C m 3 m*C_n^3+n*C_m^3 mC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值