矩阵求导公式记录

分子布局与分母布局

  1. 谁是列向量就是什么布局。分母是列向量,就是分母布局;分子是列向量,就是分子布局。
  2. (分母布局的结果) T = ^{T}= T= 分了布局的结果;
  3. (分子布局的结果) T = ^{T}= T= 分母布局的结果;

具体公式:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更多公式见维基百科

2范数求导

在这里插入图片描述

d i j = ∥ p j − p i ∥ d_{i j}=\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\| dij=pjpi
d为两点之间的距离,p为坐标信息向量
根据2范数定义:
∥ x ∥ 2 = ∑ i = 1 n x i 2  向正  x  中各元素平方和开方。  \|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \quad \text { 向正 } x \text { 中各元素平方和开方。 } x2=i=1nxi2  向正 x 中各元素平方和开方。 

d i j = ( p j − p i ) 2 = ( ( p j − p i ) 2 ) 1 / 2 \begin{aligned} d_{i j}&= \sqrt{({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} \\ &=({({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} )^{1/2} \end{aligned} dij=(pjpi)2 =((pjpi)2)1/2
求导:
d i j ˙ = ( ( p j − p i ) 2 ) 1 / 2 ˙ = 1 2 ∗ 2 ( p j − p i ) T ( ( p j − p i ) 2 ) 1 / 2 ∗ ( p j − p i ) ˙ = ( p j − p i ) T ( ( p j − p i ) 2 ) 1 / 2 ∗ ( − p i ) ˙ + ( p j − p i ) T ( ( p j − p i ) 2 ) 1 / 2 ∗ ( p j ) ˙ \begin{aligned} \dot{d_{i j}}&= \dot{({({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} )^{1/2}} \\ &=\frac{1}{2} *\frac{2({\mathbf{p}_{j}-\mathbf{p}_{i}})^{T}}{({({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} )^{1/2}}*\dot{({\mathbf{p}_{j}-\mathbf{p}_{i}})}\\ &=\frac{({\mathbf{p}_{j}-\mathbf{p}_{i}})^{T}}{({({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} )^{1/2}}*\dot{({-\mathbf{p}_{i}})}+\frac{({\mathbf{p}_{j}-\mathbf{p}_{i}})^{T}}{({({\mathbf{p}_{j}-\mathbf{p}_{i}})^2} )^{1/2}}*\dot{({\mathbf{p}_{j}})} \end{aligned} dij˙=((pjpi)2)1/2˙=21((pjpi)2)1/22(pjpi)T(pjpi)˙=((pjpi)2)1/2(pjpi)T(pi)˙+((pjpi)2)1/2(pjpi)T(pj)˙
最终得到:
d ˙ i j = ( − ( p j − p i ) T d i j ( p j − p i ) T d i j ) ( p ˙ i p ˙ j ) \dot{d}_{i j}=\left(\begin{array}{ll} -\frac{\left(\mathbf{p}_{j}-\mathbf{p}_{i}\right)^{T}}{d_{i j}} & \frac{\left(\mathbf{p}_{j}-\mathbf{p}_{i}\right)^{T}}{d_{i j}} \end{array}\right)\left(\begin{array}{l} \dot{\mathbf{p}}_{i} \\ \dot{\mathbf{p}}_{j} \end{array}\right) d˙ij=(dij(pjpi)Tdij(pjpi)T)(p˙ip˙j)
对于避障函数有:
h ( p ) = ∣ p − p o ∣ − D s  s.t.  ∂ h ∂ p = ( p − p o ) T ∣ p − p o ∣ v ⩾ − α ( h ) h(p)=\left|p-p^{o}\right|-D_{s} \quad \text { s.t. } \frac{\partial h}{\partial p}=\frac{\left(p-p^{o}\right)^{T}}{\left|p-p^{o}\right|} v \geqslant-\alpha(h) h(p)=ppoDs s.t. ph=ppo(ppo)Tvα(h)
这位博主写的很详细,记录一下!
https://blog.csdn.net/weixin_39910711/article/details/99445129
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Spgroc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值