苹果实例分割基准

背景介绍

果园水果的检测、计数和定位是农业自动化中的重要任务。它们允许农民管理和优化资源,并在收获期间做出明智的决定。水果检测和定位也是自动采摘的前提,这是劳动密集型的过程之一。

模型介绍

在这里插入图片描述

这篇博文中选用MaskRcnn作为基准模型,模型原理参考这里

数据下载

https://conservancy.umn.edu/handle/11299/206575

深度学习环境配置

dockerfile

# 继承PyTorch的cuda镜像
FROM pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel

LABEL maintainer = "xxxxxx@qq.com"
LABEL version = "0.2"
LABEL description = "prepare deep learning environment"

# 指定docker镜像中,默认的工作路径是/app
WORKDIR /app

RUN rm /etc/apt/sources.list.d/cuda.list \
	&& rm /etc/apt/sources.list.d/nvidia-ml.list \
	&& apt-get update \
	&& apt-get install -y libgl1 \
	&& conda install libgdal=3.4.1 gdal==3.4.1 tiledb=2.2 \
	&& pip config set global.index-url https://pypi.douban.com/simple/ \
	&& pip install opencv-python-headless==4.6.0.66 \
    	opencv-python==4.6.0.66 \
    	easycython==1.0.7 \
    	cython==0.29.30 \
    	pretrainedmodels==0.7.4 \
		efficientnet-pytorch==0.6.3 \
    	segmentation-models-pytorch==0.2.1 \
    	scipy>=1.4.1 \
    	path==16.4.0 \
    	scikit-image==0.15.0 \
    	scikit-learn==0.21.3 \
        pytorch_toolbelt==0.5.0  \
        prefetch_generator \
        pycocotools==2.0.5

使用方法

源码下载

链接:https://pan.baidu.com/s/1FrcYlcXvre35xSchYR32yQ
提取码:ds73

容器构建

cd docker
docker build -t dl/training:latest .
docker run -it --gpus all -v ${your project root}:${container root} dl/training:latest

训练

python train_rcnn.py --data_path /data --model maskrcnn --epochs 50 --output-dir /segmentation/results

预测

python train_rcnn.py --data_path /data --model maskrcnn --epochs 50 --output-dir /segmentation/results

复现结果

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值