思想:
在map端找出map端的最大值(局部)。map的cleanup方法输出这个最大值,再通过reduce端将map端的局部最大进行比较。求出最终最大的那个值。
怎么样找出map端的最大值?老样子,先看数据!
销售时间 社保卡号 商品编码 商品名称 销售数量 应收金额 实收金额
2018-01-01 001616528 236701 强力VC银翘片 6.0 82.8 69.0
2018-01-01 0012697828 861464 复方利血平片(复方降压片) 4.0 10.0 9.4
2018-01-01 0010060654328 861458 复方利血平氨苯蝶啶片(北京降压0号) 1.0 10.3 9.2
2018-01-01 0011811728 861456 酒石酸美托洛尔片(倍他乐克) 1.0 7.0 6.3
2018-01-01 0013448228 861507 苯磺酸氨氯地平片(安内真) 1.0 9.5 8.5
数据准备了两个文件 file1 和file2 这样容易体现最后reduce的作用
需求是计算这个数据片段中的最大值,并输出药品名称和实收金额;
也就是要输出商品的名称和实收金额,并且找出金额最大值的商品
package com.hnxy.mr.max;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import com.hnxy.mr.max.MaxWrod.MaxMapper;
import com.hnxy.mr.max.MaxWrod.MaxReducer;
public class MaxWrod3 extends Configured implements Tool {
public static class MaxMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
private Text outkey = new Text();
private DoubleWritable outval = new DoubleWritable();
private Double maxval = 0D;
private String maxkey = "";
String[] star = null;
@Override
protected void m