ollama和RagFlow连不上

我的情况:
ollama装在wsl中的Ubuntu上,RagFlow也部署在Ubuntu上,前期没有配置过环境变量,可能时这个原因导致两者连接不上

解决方案:
配置Ollama环境变量:
在这里插入图片描述
最初我配的是0.0.0.0:11434
(这里粗心搞了中文逗号,导致端口一直连不上)

下面重新总结一下要配置的东西
1、ollama.service

sudo vim /etc/systemd/system/ollama.service
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_ORIGINS=*"
#为了使更改生效,您需要重新加载systemd的配置。使用以下命令:
sudo systemctl daemon-reload
 
#最后,重启服务以应用更改:
sudo systemctl restart ollama

2、防火墙

如果服务器有防火墙(如iptables或ufw),确保开放了Ollama使用的端口(默认为11434)。您可以使用以下命令开放端口:

sudo iptables -I INPUT -p tcp --dport 11434 -j ACCEPT
 
或者,如果您使用的是ufw:
 
sudo ufw allow 11434/tcp

RagFlow连接Ollama我踩过的坑总结

1、关于模型的Url

关于基础URL的几点说明

(1)Ollama和RAGFlow在同一台机器上运行,基本URL:

http://host.docker.internal:11434

(2)Ollama和RAGFlow在同一台机器上运行,并且Ollama或者RAGFLOW在Docker中,基本URL:

http://host.docker.internal:11434

(3)Ollama在与RAGFlow不同的机器上运行,基本URL:

http://<IP_OF_OLLAMA_MACHINE>:11434
                        版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/weixin_47782004/article/details/144144363

2、关于模型名称

模型名称复制,不要手动打
在这里插入图片描述
:latest也是包含在模型名称里的!!!!!!

### 集成OllamaRAGFlow的方法 #### 背景介绍 Ollama 是一种用于运行大型语言模型 (LLM) 的开源工具,它允许开发者轻松部署管理 LLMs。而 RAGFlow 则是一种基于检索增强生成(Retrieval-Augmented Generation, RAG)的工作流框架,旨在优化问答系统的性能[^1]。 为了将 Ollama RAGFlow 结合起来,可以遵循以下方式: --- #### 方法概述 ##### 1. **配置Ollama环境** 确保已经成功安装并运行了 Ollama 容器。以下是必要的 Docker 命令: ```bash docker pull ollama/ollama docker run -d -p 8080:8080 ollama/ollama ``` 这些命令会拉取 Ollama 镜像并将其作为后台服务启动,暴露端口 `8080` 供外部访问。 ##### 2. **设置RAGFlow架构** RAGFlow 主要由以下几个部分组成: - 数据存储层:负责保存文档数据。 - 检索模块:从数据库中提取最相关的上下文信息。 - 生产模块:利用 LLM 进行文本生成。 在此过程中,Ollama 可以充当生产模块的核心组件,提供强大的自然语言处理能力。 ##### 3. **连接OllamaRAGFlow** 通过 HTTP 请求接口调用 Ollama 提供的服务。假设有一个简单的 C# 实现案例,则可以通过如下代码片段展示如何发送请求给 Ollama 并获取响应: ```csharp using System; using System.Net.Http; using Newtonsoft.Json; public class OllamaClient { private static readonly HttpClient client = new HttpClient(); public async Task<string> GenerateTextAsync(string prompt){ var content = new StringContent(JsonConvert.SerializeObject(new {prompt}), Encoding.UTF8,"application/json"); HttpResponseMessage response = await client.PostAsync("http://localhost:8080/generate",content); string responseBody = await response.Content.ReadAsStringAsync(); return responseBody; } } ``` 上述代码展示了如何构建一个异步函数来向 Ollama 发送 POST 请求,并解析返回的结果。 ##### 4. **整合至完整的RAG流程** 当用户输入查询时,先经过检索阶段找到相关联的内容摘要;随后把这些摘要连同原始问题一起传递给 Ollama 执行最终的回答生成操作。整个过程需注意保持低延迟以及高准确性。 --- #### 技术挑战与解决方案 尽管两者能够很好地协同工作,但在实际应用中可能会遇到一些技术难题,比如网络通信效率低下或者模型推理速度不足等问题。针对这些问题可采取相应措施加以改善,例如优化 API 接口设计、采用更高效的序列化协议等手段提升整体表现水平。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值