机器学习——决策树(分类)

前言:内容参考周志华老师的《机器学习》,确实是一本好书,不过本科生读懂还是有很大难度的,大多数模型都是直接给出公式,其实自己私下有推导,涉及好多自己不懂的数学知识,会一点点补充的

机器学习专栏机器学习专栏

一、决策树基本流程

一颗决策树(decision tree)包括根节点、若干内部节点和若干叶子节点,不断的判断->分支->再判断->再分支……,决策树的构成其实是一个递归的过程,遵循分而治之的策略。
在这里插入图片描述
(图源:周志华老师的《机器学习》)

二、划分选择

决策树,最重要的当然是决策(或者说叫选择),那么根据什么标准进行选择呢?如何划分最优属性?我们希望决策树的分支结点所包含的样本尽可能属于同有类别,就是结点的“纯度”(purity)越来越高。

1、信息增益(ID3算法)

“信息熵”(information entropy)是度量样本集合纯度最常用的一种指标,信息熵的计算公式为:
E n t ( D ) = − ∑ k = 1 K p k l o g 2 p k Ent(D)=-\sum_{k=1}^{K}p_klog_2p_k Ent(D)=k=1Kpklog2pk
E n t ( D ) Ent(D) Ent(D)的值越小,则 D D D的纯度越高。其中, D D D是总样本集, p k p_k pk表示第 k k k类样本出现的概率(第 k k k类样本占的比例), K K K是样本总类数。

“信息增益”(information gain)表示知道一个属性后,信息(标签判断)不确定性减少的程度,信息增益的计算公式为:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a)=Ent(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)v=1VDDvEnt(Dv)
其中,离散属性 a a a N N N种可能的取值 a 1 , a 2 , … , a V {a^1,a^2,…,a^V} a1,a2,,aV,如果使用 a a a对样本进行划分,则会产生 V V V个分支结点,记 D v D^v Dv D D D属性 a a a上取值为 a v a^v av的样本集。
所以,“信息增益”越大,就意味着用属性 a a a来划分数据集 D D D来进行划分所获得的纯度提升越大。故著名的ID3决策树算法就是以信息增益来选择划分属性:
a ∗ = a r g      m a x a ∈ A    G a i n ( D , a ) a^*=\mathop{arg\;\;max}\limits_{a\in A}\; Gain(D,a) a=aAargmaxGain(D,a)

2、信息增益率(C4.5算法)

ID3决策树通过信息增益选取划分属性,观察信息增益的公式可以看出,如果属性 a a a的属性值很多的情况下,一个属性值的分支节点的样本纯度就会很大,信息增益就会变大。所以C4.5决策算法采用“信息增益率”来选择划分属性。
“信息增益率”定义:
G a i n _ r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) Gain\_ratio(D,a)=\frac{Gain(D,a)}{IV(a)} Gain_ratio(D,a)=IV(a)Gain(D,a)
其中
I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ l o g 2 ∣ D v ∣ ∣ D ∣ IV(a)=-\sum_{v=1}^{V}\frac{|D^v|}{|D|}log_2\frac{|D^v|}{|D|} IV(a)=v=1VDDvlog2DDv
称为属性 a a a的“固有值”(intrinsic value)。属性 a a a的可能取值数目越多( V V V越大),则 I V ( a ) IV(a) IV(a)的值通常会越大。
但是,“信息增益率”准则可能会对取值数目较少的属性有所偏好。所以,C4.5算法并不是直接选择“信息增益率”最大的候选划分属性,而是使用了一个启发式算法:

  1. 先从候选划分属性中找出信息增益高于平均水平的属性;
  2. 再从中选择信息增益率最高的。

3、基尼指数(CART算法)

CART决策树使用“基尼指数”(Gini index)来选择划分属性,数据集 D D D的纯度用基尼指数来度量:
G i n i ( D ) = ∑ k = 1 K ∑ k ′ ≠ k p k p k ′ Gini(D)=\sum_{k=1}^{K}\sum_{k'\neq k}p_kp_{k'} Gini(D)=k=1Kk=kpkpk
G i n i ( D ) Gini(D) Gini(D)表示从 D D D中随机抽取两个样本,其类别不一样的概率,故 G i n i ( D ) Gini(D) Gini(D)越小, D D D纯度越高。
对属性 a a a的基尼指数定义为:
G i n i _ i n d e x ( D , a ) = ∑ v = 1 V D v D G i n i ( D v ) {Gini}\_{index(D,a)}=\sum_{v=1}^{V}\frac{D^v}{D}Gini(D^v) Gini_index(D,a)=v=1VDDvGini(Dv)
因此,我们选择那个使划分后基尼指数最小的属性作为最优划分属性,即:
a ∗ = a r g    m i n a ∈ A    G i n i _ i n d e x ( D , a ) a^*=\mathop {arg\;min}\limits_{a\in A}\;Gini\_index(D,a) a=aAargminGini_index(D,a)

三、剪枝处理

与线性回归一样,决策树也会存在过拟合的情况,线性回归的过拟合主要是通过正则化实现(可参考我的另一篇博客机器学习——特征缩放、正则化),决策树的过拟合主要是通过剪枝处理来避免的。

1、预剪枝

预剪枝是在决策树生成的过程中,对每个结点进行划分前先进行估计,若当前结点的划分不能带来决策树泛化性能(验证集的准确度)的提升,则停止划分将当前结点作为叶子结点(分类结果为该结点下占比大的类别)。
在这里插入图片描述
(图源:周志华老师的《机器学习》)

2、后剪枝

后剪枝是指先从训练集生成一颗完整的决策树,然后自下而上对非叶子结点进行考察,若将该结点及其子结点替换为叶子结点可以提高泛化能力(验证集的准确度),将该结点及其子结点替换为叶子结点(分类结果为该结点下占比大的类别)。
在这里插入图片描述
(图源:周志华老师的《机器学习》)

三、连续与缺失值处理

1、连续值处理

前面我们讨论的都是分类决策树,主要是通过离散属性来生成决策树,现实问题中,我们遇到的往往会有连续属性,这时我们就需要对连续值进行离散化处理,我们通常采用二分法(C4.5中采用的方法)

二分法
给定样本集D和连续属性a,假定a在D中出现了n个不同的取值,将这些值从小到大进行排序,记为 { a 1 , a 2 , a 3 , . . . , a n } \{a^1,a^2,a^3,...,a^n\} {a1,a2,a3,...,an}。基于划分点 t t t可以将D分为子集 D t − D^-_t Dt D t + D^+_t Dt+,显然对于相邻的值 a i 和 a i + 1 a^i和a^{i+1} aiai+1来说, t t t在区间 [ a i , a i + 1 ) [a^i,a^{i+1}) [ai,ai+1)中取任意值划分结果是一样的。因此,对于连续属性a,可能的侯划分点集合为:
T a = a i + a i + 1 2 i ∈ [ 1 , n − 1 ] T_a=\frac{a^i+a^{i+1}}{2}\quad i\in[1,n-1] Ta=2ai+ai+1i[1,n1]
二分法就体现在这,即把区间 [ a i , a i + 1 ) [a^i,a^{i+1}) [ai,ai+1)的中位点 a i + a i + 1 2 \frac{a^i+a^{i+1}}{2} 2ai+ai+1作为侯划分点,我们要选取最优的划分点:
G a i n ( D , a ) = m a x t ∈ T a    G a i n ( D , a , t ) G a i n ( D , a , t ) = E n t ( D ) − ∑ λ ∈ − , + D t λ ∣ D ∣ E n t ( D t λ ) Gain(D,a)=\mathop {max}\limits_{t \in T_a}\;Gain(D,a,t)\\ Gain(D,a,t)=Ent(D)-\sum_{\lambda\in{-,+}}\frac{D_t^\lambda}{|D|}Ent(D_t^\lambda) Gain(D,a)=tTamaxGain(D,a,t)Gain(D,a,t)=Ent(D)λ,+DDtλEnt(Dtλ)
其中, G a i n ( D , a , t ) Gain(D,a,t) Gain(D,a,t)就是样本集D基于划分点t二分后的信息增益,我们就选择使 G a i n ( D , a , t ) Gain(D,a,t) Gain(D,a,t)最大化的划分点。

2、缺失值处理

存在缺失值我们主要有两个问题:

  1. 如何在属性值缺失的情况下选择最优划分属性(如有的样本在“色泽”这个属性上的值是缺失的,那么该如何计算“色泽”的信息增益等?);
  2. 给定划分属性,若样本在该属性上缺失,如何对该样本进行划分(即这个样本到底属于哪一类?)。

对于问题1,现有数据集D和属性a,令 D ~ \widetilde{D} D 表示D在属性a上没有缺失值的样本子集,我们可以根据 D ~ \widetilde{D} D 来进行划分属性的选择。现假定属性a有V个值 a 1 , a 2 , . . . , a V {a^1,a^2,...,a^V} a1,a2,...,aV D ~ v \widetilde{D}^v D v表示 D ~ \widetilde{D} D 中属性a取值为 a v a^v av的样本子集, D ~ k \widetilde{D}_k D k表示 D ~ \widetilde{D} D 中属于第k类的样本子集。则有:
{ D ~ = ⋃ k = 1 K D ~ k D ~ = ⋃ v = 1 V D ~ v \left\{\begin{matrix} \widetilde{D}=\bigcup_{k=1}^{K}\widetilde{D}_k\\ \widetilde{D}=\bigcup_{v=1}^{V}\widetilde{D}^v \end{matrix}\right. {D =k=1KD kD =v=1VD v
初始,我们为每一个样本 x x x赋予一个权重 w x w_x wx(初始化为1),并定义:
{ ρ = ∑ x ∈ D ~ w x ∑ x ∈ D w x p ~ k = ∑ x ∈ D ~ k w x ∑ x ∈ D ~ w x r ~ v = ∑ x ∈ D ~ v w x ∑ x ∈ D ~ w x \left\{\begin{matrix} \rho =\frac{\sum_{x\in \widetilde{D}}w_x}{\sum_{x\in D}w_x} \\ \widetilde{p}_k=\frac{\sum_{x \in \widetilde{D}_k}w_x}{\sum_{x \in \widetilde{D}}w_x} \\ \widetilde{r}_v=\frac{\sum_{x\in \widetilde{D}^v}w_x}{\sum_{x\in \widetilde{D}}w_x} \end{matrix}\right. ρ=xDwxxD wxp k=xD wxxD kwxr v=xD wxxD vwx
其中, ρ \rho ρ表示无缺失值样本所占比例, p ~ k \widetilde{p}_k p k表示无缺失值样本中第k类中所占比例, r ~ v \widetilde{r}_v r v表示无缺失值样本中在属性a上取值为v的样本所占比例。显然:
{ ∑ k = 1 K p ~ k = 1 ∑ v = 1 V r ~ v = 1 \left\{\begin{matrix} \sum_{k=1}^{K}\widetilde{p}_k=1\\ \sum_{v=1}^{V}\widetilde{r}_v=1 \end{matrix}\right. {k=1Kp k=1v=1Vr v=1
基于上述定义,我们将含缺失值属性的信息增益计算推广为:
G a i n ( D , a ) = ρ × G a i n ( D ~ , a ) = ρ × ( E n t ( D ~ ) − ∑ v = 1 V r ~ v E n t ( D ~ v ) ) \begin{aligned} Gain(D,a)&=\rho \times Gain(\widetilde{D},a)\\ &=\rho \times (Ent(\widetilde{D})-\sum_{v=1}^{V}\widetilde{r}_vEnt(\widetilde{D}^v)) \end{aligned} Gain(D,a)=ρ×Gain(D ,a)=ρ×(Ent(D )v=1Vr vEnt(D v))
对问题2,若样本 x x x在属性a上的取值未知,则将 x x x划入所有子结点,权值由 w x w_x wx变为 r ~ ⋅ w x \widetilde{r}\cdot w_x r wx,即让同一个样本以不同的概率划入不同的子结点中去。
这里推荐一篇博客,讲的很详细(包括实例计算过程)决策树(decision tree)(四)——缺失值处理

四、多变量决策树

我们把每个属性视为坐标空间中的一个坐标轴,之前我们介绍的单变量决策树的分类边界都是与各个坐标轴平行
在这里插入图片描述
(图源:周志华老师的《机器学习》)

但是,当学习任务的真实边界比较复杂的时候,必须要使用很多段划分才能获得较好的近似,此时生成的决策树会很复杂。
此时,我们可能需要斜边去划分,“多变量决策树”(multivariate decision tree)的分叶子结点不再是针对某一个属性,而是一个线性分类器 ∑ i = 1 n w i a i = t \sum_{i=1}^{n}w_ia_i=t i=1nwiai=t,其中 w i w_i wi是属性 a i a_i ai的权重, w i w_i wi和t可在该结点所含的样本集和属性值上学的。
在这里插入图片描述

五、sklearn实现决策树

可以看一看这一篇博文:DecisionTreeClassifier重要参数
这里再推荐一篇博文(分类结果的评价指标):分类效果评估

# -*- coding: utf-8 -*-
"""
Created on Sun Nov 17 23:19:23 2019

@author: 1
"""

from sklearn import tree
import pydotplus
from IPython.display import Image
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score     # 准确率

df=pd.read_csv(r"D:\workspace\python\machine learning\data\iris.csv", sep=',')
iris_data=df.iloc[:, 0:3]
iris_target=df.iloc[:, 4]
iris_data_train, iris_data_test, iris_target_train,iris_target_test = train_test_split(iris_data,iris_target,train_size=.80)
clf = tree.DecisionTreeClassifier(criterion='gini')#criterion='gini'基尼指数,criterion='entropy'信息增益,
clf = clf.fit(iris_data_train, iris_target_train)  
dot_data = tree.export_graphviz(clf, out_file =None,
                         feature_names=df.columns[:3], # 特征名称
                         class_names=df.columns[4], # 目标变量的类别
                         filled=True, rounded=True,  
                         special_characters=True)  
y_pred=clf.predict(iris_data_test)
print('accuracy_score:',accuracy_score(iris_target_test, y_pred))
graph = pydotplus.graph_from_dot_data(dot_data)  
graph.write_png("out.png")     # 当前文件夹生成out.png

由iris数据集得到的决策树:
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tao_RY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值