机器学习——朴素贝叶斯分类器及sklearn实现

前言:参考《机器学习》,简单介绍朴素贝叶斯分类器

机器学习专栏机器学习专栏

一、贝叶斯定理

贝叶斯定理(Bayes’ theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。

  1. 条件概率公式: P ( B ∣ A ) = P ( A , B ) P ( B ) P(B|A)=\frac {P(A,B)}{P(B)} P(BA)=P(B)P(A,B)
  2. 贝叶斯公式: P ( A ∣ B ) = P ( A , B ) P ( B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) P(A|B)=\frac{P(A,B)}{P(B)}=\frac {P(B|A)·P(A)}{P(B)} P(AB)=P(B)P(A,B)=P(B)P(BA)P(A)

其中,

  • P(A)是A的先验概率或边缘概率,它不考虑任何B方面的因素;
  • P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率;
  • P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率;
  • P(B)是B的先验概率或边缘概率,也作标准化常量(normalized constant)。

二、贝叶斯分类法

现给定数据集 D = ( ( x ( 1 ) , y ( i ) ) , ( x ( 2 ) , y ( 2 ) ) , . . . , ( x ( m ) , y ( m ) ) ) D={((x^{(1)},y^{(i)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)}))} D=((x(1),y(i)),(x(2),y(2)),...,(x(m),y(m))),假设有K种可能的类别标记, C = { c 1 , c 2 , . . . , c K } C=\{c_1,c_2,...,c_K\} C={c1,c2,...,cK},则 , y ( i ) ∈ { c 1 , c 2 , . . . , c k } ,y^{(i)}\in\{c_1,c_2,...,c_k\} ,y(i){c1,c2,...,ck}

贝叶斯分类的实质就是:给定一个样本 x ( i ) x^{(i)} x(i),其属于类别k的概率为: P ( c k ∣ x ( i ) ) P(c_k|x^{(i)}) P(ckx(i)),贝叶斯分类的分类结果就是条件概率 P ( c ∣ x ( i ) ) P(c|x^{(i)}) P(cx(i))(或者称为似然)最大的那个类别,即:
a r g    m a x c k ∈ C    P ( c k ∣ x ( i ) ) \mathop{arg\;max}\limits_{c_k\in C}\;P(c_k|x^{(i)}) ckCargmaxP(ckx(i))
我们将我们前面介绍的贝叶斯公式换成符合数据集D的形式:
P ( c ∣ x ) = P ( x ∣ c ) ⋅ P ( c ) P ( x ) P(c|x)=\frac {P(x|c)·P(c)}{P(x)} P(cx)=P(x)P(xc)P(c)
给定数据集的情况下,我们利用大数定律就可以确定 P ( c ) P(c) P(c),对于确定的样本 x x x x = [ x 1 , x 2 , . . . , x n ] x=[x_1,x_2,...,x_n] x=[x1,x2,...,xn])n为属性个数,对所有类别来说 P ( x ) P(x) P(x)也是确定的。
假设各个属性相互独立(这就是“朴素”),则:
P ( x ∣ c ) = ∏ j = 1 n P ( x j ∣ c ) P(x|c)=\prod_{j=1}^{n}P(x_j|c) P(xc)=j=1nP(xjc)

基于上面所述的贝叶斯判定准则,可以得出朴素贝叶斯分类器的表达式为:
h n b ( x ) = a r g    m a x c ∈ C    P ( c ) ∏ j = 1 n P ( x j ∣ c ) h_{nb}(x)=\mathop{arg\;max}\limits_{c\in C}\;P(c)\prod_{j=1}^{n}P(x_j|c) hnb(x)=cCargmaxP(c)j=1nP(xjc)

  1. 对离散属性,令 D c , x i D_{c,x_i} Dc,xi表示 D c D_c Dc中在第j个属性上取值为 x j x_j xj的样本组成的集合,则:
    P ( x j ∣ c ) = ∣ D c , x i ∣ ∣ D c ∣ P(x_j|c)=\frac{|D_{c,x_i}|}{|D_c|} P(xjc)=DcDc,xi
  2. 对连续属性可使用概率密度函数,假定 p ( x j ∣ c ) ∼ N ( μ c , j , δ c , i 2 ) p(x_j|c)\sim N(\mu_{c,j},\delta^2_{c,i}) p(xjc)N(μc,j,δc,i2),其中 μ c , j , δ c , i 2 \mu_{c,j},\delta^2_{c,i} μc,j,δc,i2分别表示第c类样本在第i个属性上取值的均值和方差,则:
    p ( x i ∣ c ) = 1 2 π δ c , i e x p ( − ( x i − μ c , i ) 2 2 δ c , i 2 ) p(x_i|c)=\frac{1}{\sqrt {2\pi}\delta_{c,i}}exp(-\frac{(x_i-\mu_{c,i})^2}{2\delta^2_{c,i}}) p(xic)=2π δc,i1exp(2δc,i2(xiμc,i)2)

明显可以看出朴素贝叶斯分类器更适用于离散属性,所以我们也可以考虑连续离散化处理的方法。

三、sklearn实现贝叶斯分类

# -*- coding:utf-8 -*-
"""
@author: 1
@file: bayes.py
@time: 2019/11/30 1:25
"""

from sklearn.naive_bayes import GaussianNB
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

df = pd.read_csv(r'D:\workspace\python\machine learning\data\iris.csv')
X = df.iloc[:, 0:3]
Y = df.iloc[:, 4]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
# 属性假设为高斯分布
gnb = GaussianNB()
model = gnb.fit(x_train, y_train)
y_pred = model.predict(x_test)
print('accuracy_score:', accuracy_score(y_test, y_pred))

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tao_RY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值