【算法】01 弗洛伊德(Floyd)算法

本文深入讲解了Floyd算法,一种用于解决有环图中所有顶点到所有顶点最短路径的问题。通过详细的数学公式和代码实现,展示了算法的主要思想和步骤。Floyd算法的时间复杂度为O(n^3),适用于寻找所有点对之间的最短路径。
摘要由CSDN通过智能技术生成

文章目录

1 基本原理

Floyd算法是为求解有环图所有顶点所有顶点最短路径的算法,算法复杂度为O(n3)。

主要思想是让每个顶点作为中转,比较与原有路径大小关系,更新矩阵。

D 0 [ v ] [ w ] = m i n { D − 1 [ v ] [ w ] , D − 1 [ v ] [ 0 ] + D − 1 [ 0 ] [ w ] } D^0[v][w]=min\{D^{-1}[v][w],D^{-1}[v][0]+D^{-1}[0][w]\} D0[v][w]=min{D1[v][w],D1[v][0]+D1[0][w]}

2 代码

typedef int Patharc[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G, Patharc *P, ShortPathTable *D)
{    
	int v,w,k;    
	for(v=0; v<G.numVertexes; ++v) /* 初始化D与P */  
	{        
		for(w=0; w<G.numVertexes; ++w)  
		{
			(*D)[v][w]=G.arc[v][w];	/* D[v][w]值即为对应点间的权值 */
			(*P)[v][w]=w;				/* 初始化P */
		}
	}
	for(k=0; k<G.numVertexes; ++k)   
	{
		for(v=0; v<G.numVertexes; ++v)  
		{        
			for(w=0; w<G.numVertexes; ++w)    
			{
				if ((*D)[v][w]>(*D)[v][k]+(*D)[k][w])
				{/* 如果经过下标为k顶点路径比原两点间路径更短 */
					(*D)[v][w]=(*D)[v][k]+(*D)[k][w];/* 将当前两点间权值设为更小的一个 */
					(*P)[v][w]=(*P)[v][k];/* 路径设置为经过下标为k的顶点 */
				}
			}
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值