
史上最全slam从零开始
文章平均质量分 93
主要包含:
(01)ORB-SLAM2源码解析
江南才尽,年少无知!
志在九天不为乡愁换白发,偏偏年少白衣博天涯!
展开
-
史上最简SLAM零基础解读(8.1) - 旋转矩阵、旋转向量、欧拉角推导与相互转换
为了大家方便查询,先结论,再给出推导过程(四元数的相关知识,公式转换与过程推导在下一篇博客)旋转矩阵旋转向量欧拉角四元数旋转矩阵1旋转向量欧拉角四元数\hline & 旋转矩阵 &旋转向量 &欧拉角 & 四元数 \\\hline 旋转矩阵& 1& & & \\\hline 旋转向量& & & & \\\hline 欧拉角 & & & & \\\hline 四元数 & & & & \\\hline旋转矩阵旋转向量欧拉角四元数旋转矩阵1。原创 2022-11-10 18:33:00 · 1732 阅读 · 0 评论 -
史上最简SLAM零基础解读(7) - Jacobian matrix(雅可比矩阵) → 理论分析与应用详解(Bundle Adjustment)
本人讲解关于slam一系列文章汇总链接:史上最全slam从零开始 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证{\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证}文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证 该篇博客主要讲解→雅可比矩阵定义、推导、以及其应用,并且有相应的示例解读 雅可比在函数行列式方面有一篇著名的论文:《论行列式的形成与性原创 2022-10-08 15:42:56 · 4048 阅读 · 4 评论 -
史上最简SLAM零基础解读(10.3) - g2o(图优化)→边(Edge)编程细节
通过上一篇博客,已经完成顶点(Vertex)\color{red}顶点 (Vertex)顶点(Vertex)的讲解,下面来看看边(Edge)\color{red}边(Edge)边(Edge)。其实呢,是比较类似的,但是相对而言g2o的边比顶点稍微复杂一些,不过没有关系,因为编程的都有固定的格式,只需要姑规规矩矩的来就行了。接下来主要分成如下几个部分进行讲解:1、初步认识g2o的边;2、如何自定义g2o的边;3、如何向图中添加边;在源码。原创 2022-09-28 14:34:17 · 1598 阅读 · 1 评论 -
史上最简SLAM零基础解读(10.2) - g2o(图优化)→顶点 (Vertex)编程细节
在上一篇博客中,讲解了运行该示例代码环境的搭建,同时对 g2o 进行了简单的讲解。其实对于g2o(图优化)来说,只要理解了顶点(Vertex)\color{red}顶点 (Vertex)顶点(Vertex)与边(Edge)\color{red}边(Edge)边(Edge),那么接下下来的构图以及编程都是十分的简单,所以在进行代码讲解之前,先来看看 顶点 (Vertex) 与 边(Edge) 的介绍。原创 2022-09-27 17:31:53 · 1812 阅读 · 0 评论 -
史上最简SLAM零基础解读(10.4) - g2o(图优化)→示例代码讲解(slam十四讲第二版为例)
示例代码为在上一篇博客中,讲解了运行该示例代码环境的搭建,同时对 g2o 进行了简单的讲解。(1)(1)顶点和边的类型定义;(2)(2)构建图优化实例,配置求解器;(3)(3)添加点和边,构建求解图;(4)(4)执行优化。后续,会把源码拆解成这四个部分,分别进行讲解。在这之前,先说一下示例代码的目的。虽然上一篇博客已经把代码运行了起来,但是并没有讲解其作用。原创 2022-09-15 13:53:46 · 1530 阅读 · 0 评论 -
史上最简SLAM零基础解读(10.1) - g2o(图优化)→简介环境搭建(slam十四讲第二版为例)
针对与 g2o(图优化) 的讲解,主要分成三个部分,分别为: 理论讲解,环境搭建,代码分析。那么现在我们开始第一步,理论讲解吧!通过该篇博客,对 g2o 了进行了简单的介绍,搭建好了示例代码的环境并且运行其可执行文件。下面就是对代码进行细致的讲解了,也就是理论结合实践。原创 2022-09-13 10:26:56 · 3608 阅读 · 0 评论 -
史上最简SLAM零基础解读(6) - 卡方分布(chi-square distribution)和()卡方检验(Chi-Squared Test) → 理论讲解与推导
我们最终的目的是为了讲解如何在工程上使用卡方检验(Chi-Squared Test) ,在这之前我们需要了解两个重要的知识点,那就是卡方分布(chi-square distribution)和()卡方检验(Chi-Squared Test)。为了方便大家理解,以通俗的方式进行讲解,然后再引入专业的相关名词。原创 2022-08-20 12:12:02 · 2721 阅读 · 0 评论 -
史上最简SLAM零基础解读(5) - Homography,Fundamental,Essential深入浅出→了解适用场景:共面、非共面、仅旋转
通过文首的一系列博客,相信大家对于 Homography,Fundamental,Essential 矩阵已经有了一一定认知,比如他们的公式对应如下(前面的博文有推导):是两个相机的内参,$d_a$ 是相机坐标系 a 到特征点平面的距离,$\mathbf{n}$是特征点平面法向量,...原创 2022-04-27 18:52:27 · 1800 阅读 · 1 评论 -
史上最简SLAM零基础解读(4) - 单应性Homography →公式推导与细节理解
该篇博客,主要是对 Homography 矩阵进行一个细致的讲解,主要分为三个部分: 基本介绍、参数设定、公式推导、适用场景、八点求解。废话也不多说,那么我们下面就开始吧。原创 2022-04-25 10:03:42 · 2345 阅读 · 5 评论 -
史上最简SLAM零基础解读(3) - 白话来说SVD奇异值分解(2)→超定方程求解,最小奇异值特征为最优解
在讲解超定方程求解之前,以及为什么最小奇异值对应的特征特征向量为最优解之前,我们需要知道以下知识:矩阵的特征向量,特征值,EVD(特征分解),SVD(奇异值分解)等相关知识。这些内容本人在上一篇博客中,有特别详细的讲解,链接如下:[史上最简SLAM零基础解读(3) - 白话来说SVD奇异值分解(1)→原理推导与奇异值求解举例](https://blog.csdn.net/weixin_43013761/article/details/123815668)。请认真仔细的阅读这篇博客,阅读以及弄明白之后,就可以原创 2022-03-31 15:51:14 · 2255 阅读 · 1 评论 -
史上最简SLAM零基础解读(3) - 白话来说SVD奇异值分解(1)→原理推导与奇异值求解举例
这篇博客,主要使用最通俗的语言来讲解SVD奇异值分解,通过该篇博客,将知道 SVD 的来龙去脉,底层原理。同时知道如何利用他去做图片压缩,PCA,求解矩阵(如 Fundamental 矩阵,Homography 矩阵)等。我会详细的讲解 SVD 的每一个细节。由浅到深,由窄到广。那么我们现在就开始吧。......原创 2022-03-29 13:29:35 · 2708 阅读 · 8 评论 -
史上最简SLAM零基础解读(2) - 对极约束→Essential矩阵、Fundamental矩阵推导
本人讲解关于slam一系列文章汇总链接:史上最全slam从零开始有兴趣的朋友可以加微信 17575010159 相互讨论技术 - 文末公众号也可关注 一、什么是对极约束首先,我们用通俗的方式来理解什么是 对极约束\color{red}{对极约束}对极约束,图像如下所示,(1)、O0,O1O_0,O_1O0,O1 分别是两个位置中相机的光心,也就是针孔相机模型中的针孔。(2)、I0,I1I0,I1I0,I1 分别是两个相机的成像平面。(3)、PPP 是空间中的一个三维点,p0p_0原创 2022-03-21 13:54:31 · 4082 阅读 · 13 评论 -
史上最简SLAM零基础解读(1) - 旋转平移矩阵→欧式变换推导
本人讲解关于slam一系列文章汇总链接:史上最全slam从零开始有兴趣的朋友可以加微信 17575010159 相互讨论技术 - 文末公众号也可关注 一、前言(线性变换)该篇博客主要讲解一个 slam 中最基础的几个东西,那就是旋转矩阵,缩放矩阵以及偏移矩阵。本人会做一个比较细致的讲解。首先从二维平面开始引入,等大家略微了解之后,再扩展到三维。在讲解之前,聊一下其他的东西,那就是线性变换。在学习线性代数的时候,如果矩阵 AAA 左乘一个向量 v⃗\vec vv, 就说成矩阵 AAA 对向原创 2022-04-06 19:15:44 · 8068 阅读 · 1 评论 -
史上最全slam从零开始-总目录
讲解关于slam一系列文章主要分为以下几个板块,其中的序列号代表其学习难度,入门学员建议从01开始学习,相同序列号表示其难度相当文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证。原创 2022-02-23 16:20:56 · 51706 阅读 · 6 评论