1. 引言
随着能源和环境问题的日趋严峻,可再生能源发电特别是风力发电技术得到了广泛关注和长足发展, 其中基于双馈异步发电机(doubly-fedinduction generator,DFIG)的风力发电系统应用最为广泛。DFIG 风电系统采用背靠背式双PWM 变流器,其中,网侧变流器用于控制直流母线电压恒定及调节网侧功率因数,转子侧变流器用于实现对DFIG 输出有功功率和无功功率的独立控制。
目前,理想电网电压下的 DFIG 控制技术已经日渐成熟,为增强风电机组在弱电网下的运行能力考虑电网不平衡下的DFIG 控制技术得到了广泛的研究[6-9]。然而实际电网中总是存在一定的谐波电压,IEEE 519-1992[10]and ER G5/4-1[11]等标准中规定电网电压中允许存在不超过5%的5、7 次谐波分量。此时如果DFIG 保持控制策略不变,将出现定/转子电流畸变以及定子输出有功/无功功率和电磁转矩脉动,不利于DFIG 风电机组的稳定可靠运行。
为了改善谐波电压下 DFIG 的运行性能,必须实现DFIG 谐波电流的精确控制。目前较为常用的电流调节器包括比例积分(proportional integral,PI)调节器、比例积分谐振(PIR)、比例谐振(PR)调节器、以及矢量比例积分(VPI)调节器。由于PI 调节器仅对直流信号具有优良的调节能力,
因此必须在各次谐波同步旋转坐标系下实现对各次谐波电流的控制,复杂的谐波提取算法降低了转子电流控制的快速性及准确性。PR 与PIR 调节器均使用谐振器对谐波频率信号产生较高增益,实现谐波电流的控制,由于无需谐波电流提取,降低了算法复杂度,可有效保证转子电流的快速准确跟踪。
考虑到待调节的 DFIG 转子电流谐波分量在同步速旋转坐标系下表现为6 倍电网频率的交流信号因此为实现DFIG 谐波电流的精确控制,不仅需要电流调节器闭环传递函数在谐振频率点处的幅频特性满足0 dB,还需要电流调节器闭环传递函数在谐振频率点处的相位响应为0°,才能实现谐波电流的无差跟踪,进而实现谐波下的DFIG 控制目标。但是,PR 与PIR 调节器中谐振器由一阶分子及二阶分母组成,无法达到谐振频率点处闭环函数的0° 相位响应。而VPI 调节器拥有二阶分子,可确保控制系统闭环函数在谐振频率点处相位响应取得理想的0° 相位延迟。因此,传统PIR 调节器虽然能实现转子谐波电流的有效控制,然而PIR闭环传递函数的相位响应缺陷决定了其无法达到VPI 调节器所具备的高精度谐波电流控制能力。
本文在介绍 5、7 次谐波电网电压下DFIG 数学建模基础上,从DFIG 机组可靠运行出发,以电磁
转矩及定子输出无功功率无波动为控制目标,给出了DFIG 谐波电流指令。为实现谐波电流的准确跟踪,采用基于同步速旋转坐标系下的VPI 电流调节器,以实现谐波控制目标。最后构建了1.6 kW 的DFIG 机组,对所提理论进行了实验验证。
2. 谐波电网电压下DFIG 控制策略
2.1 谐波电网下DFIG 数学模型
考虑到电网电压所含谐波以 5 次及7 次分量为主,因此本文主要研究电网5 次及7 次谐波电压共存下DFIG 的高性能控制技术。图 1 为定子两相静止 αβ 坐标系、转子两相相对转子绕组静止 αβr 坐标系,基频同步旋转dq+ 坐标系,5 次谐波旋转dq5− 坐标系和7 次谐波旋转dq7+坐标系的空间示意图。
图 2 为DFIG 在dq+ 坐标系下的等效电路,可以得出
式中:Lr 为转子电感;Rr 为转子电阻;σ = 1 − Lm 2 /(Ls Lr)为漏磁系数;Ls 为定子电感;Lm 为互感;I 为电流;U 为电压;下标rdq 为转子的dq 轴分量。
DFIG 定子电流在dq+ 坐标系下可表示为
式中:上标 + 为dq+ 旋转坐标系;下标sdq、rdq 分别为定、转子的dq 轴分量;Lm 为定转子互感;Ls为定子自感;I 为电流;ψ 为磁链。DFIG 定子电压在dq+ 坐标系下可表示为
式中:上标5−、7+ 分别表示dq5− 坐标系和dq7+ 坐标系;下标5−,7+ 分别表示5 次、7 次谐波分量;U 表示电压。
谐波电网电压下的 DFIG 定子输出瞬时有功和无功功率可表示为
将式(2)、(3)代入式(4),瞬时有功功率和无功功率可表示为