逻辑回归模型一般用来解决二分类问题。
Binary Classification
一般的二分类问题,输出 y y y 只有 {0, 1} 两个离散值,也有 {-1, 1} 的情况。
以一个图像识别问题为例,判断图片中是否有猫存在,0 代表not-cat,1 代表cat。
一般来说,彩色图片包含RGB三个通道。例如该cat图片的尺寸为(64,64,3)。
在神经网络模型中,我们首先要将输入的图片 X X X(64,64,3)转化为一维的特征向量(feature vector)。方法是每个通道一行一行取,再连接起来。由于64x64x3=12288,则转化后的输入特征向量维度为(12288,1),此特征向量X是列向量,维度一般记为 n x n_x nx 。
这里, X X X的维度之所以是 ( n x , 1 ) (n_x,1) (nx,1) 而不是 ( 1 , n x ) (1,n_x) (1,nx) 的原因是为了之后矩阵运算的方便———来自Andrew Ng的经验。
如果训练样本共有 m m m 张图片,那么 整个训练样本矩阵 X : ( n x , m ) X:(n_x, m) X:(nx,m)。 注意,这里矩阵 X X X的行 n x n_x nx 代表了这 m m m个样本 x 1 x_{1} x1 ~ x m x_{m} x