逻辑回归解决二分类问题(一)

本文介绍了逻辑回归在二分类问题中的应用,包括如何将图像数据转化为特征向量,逻辑回归模型的假设形式,以及为什么使用Sigmoid函数来限定输出在0和1之间。还探讨了逻辑回归的损失函数,即交叉熵误差,用于模型参数的优化。
摘要由CSDN通过智能技术生成

逻辑回归模型一般用来解决二分类问题。

Binary Classification

一般的二分类问题,输出 y y y 只有 {0, 1} 两个离散值,也有 {-1, 1} 的情况。

以一个图像识别问题为例,判断图片中是否有猫存在,0 代表not-cat,1 代表cat。
在这里插入图片描述
一般来说,彩色图片包含RGB三个通道。例如该cat图片的尺寸为(64,64,3)。
在神经网络模型中,我们首先要将输入的图片 X X X(64,64,3)转化为一维的特征向量(feature vector)。方法是每个通道一行一行取,再连接起来。由于64x64x3=12288,则转化后的输入特征向量维度为(12288,1),此特征向量X是列向量,维度一般记为 n x n_x nx

这里, X X X的维度之所以是 ( n x , 1 ) (n_x,1) (nx1) 而不是 ( 1 , n x ) (1,n_x) (1nx) 的原因是为了之后矩阵运算的方便———来自Andrew Ng的经验。

如果训练样本共有 m m m 张图片,那么 整个训练样本矩阵 X : ( n x , m ) X:(n_x, m) X:(nx,m) 注意,这里矩阵 X X X的行 n x n_x nx 代表了这 m m m个样本 x 1 x_{1} x1 ~ x m x_{m} x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值