CIM:插补时空数据框架2021篇

本文提出了一种基于联合矩阵分解的交通拥堵数据插补模型(CIM),旨在处理交通数据中的缺失值问题。CIM利用周期性、道路相似性和时间相干性,对交通拥堵模式进行建模,有效估计缺失的拥堵程度。通过实验证明,CIM在交通数据插补任务上优于平均历史数据、模型建模和深度学习等基线方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于联合矩阵分解的交通拥堵数据缺失数据填补在这里插入图片描述

paper link

摘要:
现实中,由于一些意外错误而造成部分交通数据的缺失是不可避免的,这不仅影响交通管理,也阻碍了交通数据研究的发展。在本文中,我们提出了一种基于联合矩阵分解的交通拥堵数据插补模型(简称CIM)。 CIM 对交通拥堵模式的特征(包括周期性、道路相似性和时间相干性)进行联合建模,以估计缺失的拥堵值。具体来说,我们首先根据交通拥堵数据构建一个 3 阶张量。然后,我们利用空间和时间信息,通过联合矩阵分解对周期性和道路相似性进行建模。最后,我们将局部约束纳入矩阵分解过程中,以确保时间相干性。真实交通数据集上的实验结果表明,同时对拥堵模式的三个特征进行建模是有效的,并且 CIM 优于缺失交通数据插补任务的基线。

引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值