基于联合矩阵分解的交通拥堵数据缺失数据填补
摘要:
现实中,由于一些意外错误而造成部分交通数据的缺失是不可避免的,这不仅影响交通管理,也阻碍了交通数据研究的发展。在本文中,我们提出了一种基于联合矩阵分解的交通拥堵数据插补模型(简称CIM)。 CIM 对交通拥堵模式的特征(包括周期性、道路相似性和时间相干性)进行联合建模,以估计缺失的拥堵值。具体来说,我们首先根据交通拥堵数据构建一个 3 阶张量。然后,我们利用空间和时间信息,通过联合矩阵分解对周期性和道路相似性进行建模。最后,我们将局部约束纳入矩阵分解过程中,以确保时间相干性。真实交通数据集上的实验结果表明,同时对拥堵模式的三个特征进行建模是有效的,并且 CIM 优于缺失交通数据插补任务的基线。
引言