STGAN:用于交通数据插补的时空生成对抗网络

本文提出了一种名为STGAN的时空生成对抗网络,用于交通数据插补。STGAN考虑了数据的时空相关性,通过中心损失和生成损失改善插补效果,以更准确地估算缺失的交通数据。实验表明,STGAN在交通数据插补任务中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
文章地址:
STGAN: Spatio-temporal generative adversarial network for traffic data imputation

主要研究问题:

由于硬件故障或数据传输,观测到的交通数据中产生了噪声和缺失条目。这些质量差的数据无疑会降低ITS的性能;

本文贡献:

  • 为交通数据插补任务提出了一种改进的生成对抗网络框架。引入 GAN 来捕获大量分布的流量数据,并链接扩张卷积捕获的相邻数据以优化插补过程。(其实就是去找到真实数据的分布,并且我认为数据本身以及是已知的,才能用GAN这样的框架,本质就是去学习数据的分布情况)在本文中,我们考虑了丢失交通数据的时空相关性,并提出了一种改进的基于 GAN 的交通数据插补方法,称为时空生成对抗网络(STGAN)。
  • 受到流量数据与其周围邻居之间强相关性的启发(是否可以和nat
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值