google cloud platform 中ML engine 任务中的文件读取保存问题

前几天在做kaggle的比赛——The 2nd YouTube-8M Video Understanding Challenge时,使用的是gcp的ML Engine来做的模型的训练和结果的预测,在使用bucket中的文件时,我们直接的思路就是用os.path系列命令来判断文件的有无并完成文件操作和读取。然而在实际操作过程中,发现文件并没有按照预想进行读取和写入。
查找相关资料后,发现使用TensorFlow里面的io命令可以解决这一问题:

from tensorflow.python.lib.io import file_io
#从ML Engine服务器本地中复制文件到bucket里
def copy_file_to_gcp(job_dir, file_path):
    with file_io.FileIO(file_path, mode='rb') as input_f:
        with file_io.FileIO(os.path.join(job_dir, file_path), mode='w+') as output_f:
            output_f.write(input_f.read())
#从bucket里复制文件到ML Engine服务器本地
def copy_gcp_to_file(job_dir,file_name):            
with file_io.FileIO(os.path.join(job_dir, file_path), mode='rb') as input_f:
    with file_io.FileIO(file_path, mode='w+') as output_f:
        output_f.write(input_f.read())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值