经常在处理数据中从一个总数据中清洗出数据, 但是有时候需要把没有处理的数据也统计出来.
这时候就需要使用:
pandas.DataFrame.isin
DataFrame中的每个元素是否都包含在值中
例子:
如何实现SQL的等价物IN和NOT IN?
我有一个包含所需值的列表。下面是一个场景:
df = pd.DataFrame({'countries':['US','UK','Germany','China']})
countries = ['UK','China']
# pseudo-code:
df[df['countries'] not in countries]
之前的做法是这样:
df = pd.DataFrame({'countries':['US','UK','Germany','China']})
countries = pd.DataFrame({'countries':['UK','China'], 'matched':True})
# IN
df.merge(countries,how='inner',on='countries')
# NOT IN
not_in = df.merge(countries,how='left',on='countries')
not_in = not_in[pd.isnull(not_in['matched'])]
但上面这样做觉得很不好, 也翻了文档才找到比较好解决方式.
# IN
something.isin(somewhere)
# NOT IN
~something.isin(somewhere)
例子:
>>> df
countries
0 US
1 UK
2 Germany
3 China
>>> countries
['UK', 'China']
>>> df.countries.isin(countries)
0 False
1 True
2 False
3 True
Name: countries, dtype: bool
>>> df[df.countries.isin(countries)]
countries
1 UK
3 China
>>> df[~df.countries.isin(countries)]
countries
0 US
2 Germany