最小二成解解矩阵方程,矩阵方程不能解就用这种方法

很多时候矩阵方程不好解
比如 A x = b Ax = b Ax=b
普通方法的线性代数做法: A − 1 A x = A − 1 b A^{-1}Ax = A^{-1}b A1Ax=A1b
因为 A − 1 A = E A^{-1}A = E A1A=E
所以 x = A − 1 b x = A^{-1}b x=A1b
普通方法的python实现:

x = np.linalg.solve(A,b)

可是有时候这样无法解,因为普通方法有局限性,尤其当矩阵A为奇异矩阵时无发用上面的普通方法解绝

用**奇异值分解(SVD分解)方法**:
A = U D V T A = UDV^T A=UDVT
分解完成之后 V 的 最 后 一 列 就 是 A x = 0 的 解 V的最后一列就是Ax=0的解 VAx=0
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Sadam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值