一、经验模态分解及其衍生方法
1.经验模态分解(empirical mode decomposition,EMD)
能够根据信号内在特点自动地将信号分解成多个几乎相互正交的本征模态函数( intrinsic mode functions, IMF),已经广泛用于非线性、非平稳信号的特征分离。
不足:EMD 的端点效应和噪声敏感性都会导致分解结果存在模态混叠现象,且 EMD 算法没有严格的数学理论依据,有待于进一步的数学推导证明。
2.EMD 的改进方法——总体经验模态分解 (ensemble empirical mode decomposition, EEMD) 算法
该方法利用白噪声均值为零的特性改善 EMD 模态混叠现象,在原始信号上叠加不同高斯白噪声并进行多次 EMD 分解操作,然后对多次分解产生的 IMFs 进行平均处理。
不足:EEMD 并未完全消除 EMD 的模态混叠现象,只是一定程度的改善。信号通过 EEMD处理,可能会产生若干植入性 IMF,在这种情况下,需要对多级 IMF 做平均,这可能导致虚假分量的产生。此外,EEMD 需要人工经验来设置白噪声的数值,工作量大,若数值设置不当,也无法有效地减少模态混叠。
3.局部均值分解算法(local mean decomposition, LMD)
LMD 将原始信号分解为若干个乘积函数 (product functions, PF),而不是本征模态函数(IMF),每个 PF 都由一个包络信号和一个特定尺度且具有真实物理意义的纯调频信号的乘积表示。LMD 可以降低原始信号中的噪声和其他干扰成分,得到更准确的真实信号。因此,LMD 可用于原始信号的降噪提纯。
不足:LMD 也存在模态混叠
4.总体局部均值分解 (ensemble local mean decomposition, ELMD) 算法
该算法首先向原始信号中添加能量有限的独立白噪声,然后利用LMD 思想将附加噪声的信号多次分解为若干乘积函数集合,并求多次分解结果的平均值得到最终分解结果。
不足:若白噪声不能被完全中和,会影响分解效果,从而导致重构误差。
5.变分模态分解(variational mode decomposition,VMD)
是一种适用于非平稳信号的非递归时频分析方法[25]。与 EMD 相比,VMD 在抗模态混叠、计算及收敛速度和噪声鲁棒性上有着明显优势。VMD的自适应性表现在不仅能自适应地确定模态个数,还能对每个模态的最佳中心频率和带宽进行估计,将信号分解为带限的固有模态函数的集合,从而实现模态分量的有效分离。
不足:其信号处理效果受惩罚参数 和模态分量分解个数 的影响,这 2 个参数值需要先验知识来确定,增加了其应用于工程的困难。
二、小波变换
与短时傅里叶变换(STFT)的分辨率固定不同,基于小波的方法具有多尺度、多分辨率的能力,能够自适应地对非平稳信号进行多分辨率分解,故在轴承复合故障诊断领域得到了广泛应用。
1.连续小波变换 (continuous wavelet transform,CWT)
与傅里叶变换 (Fourier transform, FT) 类似,也是利用某个基函数族来表示信号,不同之处在于,CWT 的基函数为小波函数族,而 FT 的基函数是余弦和正弦函数族。CWT 将信号分解为小波基函数的线性组合,这些小波基函数由母小波函数缩放和平移产生。
不足:CWT 中的平移量和尺度参数连续变化,计算量较大,不满足在线故障诊断的实时性要求。
2.离散小波变换(discrete wavelet transform,DWT)
将 CWT 中的尺度参数 和平移量 离散化为DWT,DWT 非常适合于离散采样数据的处理。离散小波变换计算效率高,故得到广泛应用。
不足:DWT 可以实现信号多分辨率分析,低频段拥有高分辨率,但由于其忽略每一级分解中的高频段,且其频带是按二进制离散,因此在实际应用中存在不能准确提取所需频带信号分量的隐患。另外,由于参数离散化处理,DWT 缺乏平移不变性。
3.小波包变换(wavelet packet transform, WPT)
是小波变换的改进。在小波变换中未分解的高频段的细节信息,WPT 能对其进行进一步分解,提高高频段分辨率,从而实现信号全频段的重构。
不足:与 DWT 相比,小波包变换实现了信号全频段重构,但是 WPT 信号重构时,可能会因隔点采样出现频率混叠现象。
4.第二代小波变换( second generation wavelet transform, SGWT)
提升策略取代了经典DWT的变换策略,其实现过程包括分解、预测和更新 3 个步骤:
1)利用分解算子将原始信号序列分解为偶序列和奇序列;
2)根据预测算子使用偶序列预测奇序列,将预测差值定义为细节信号;
3)利用细节信号更新偶序列 ,继而得到近似信号。
SGWT 不依赖 Fouerier 变换,且小波基也不是由母小波平移和缩放形成,其所有运算均在时域完成,不仅能将信号分解于不同频带,还可凭借预测系数和提升系数的优化设计获得具有独特功能的小波基函数,使得为不同故障特征构造相应小波基函数成为可能。
不足:SGWT 方法中最重要的步骤是构建预测和更新算子。如果缺少向量预测的个数,分解结果会出现频率混叠现象。设计性能优良的矢量预测和更新算子对提升 SGWT 的性能具有重要意义。
5.双树复小波变换(dualtree complex wavelet transform, DTCWT)
DTCWT 具有更好的平移不变性并能减少频率混叠,非常适用于提取轴承故障中周期性冲击特征,并通过试验验证了其故障特征提取效果优于 SGWT 和快速谱峭度方法。
不足:DTCWT 的平移不敏感性的优点源于实部小波基和虚部小波基间的希尔伯特对关系[44]。DTCWT改善了时移缺陷和频率混叠,但不能从根本上消除频率混叠,因此,DTCWT 尚需要继续改进。
6.双树复小波包变换(DTCWPT)
对 DTCWT 算法中未进行细分的高频部分进行分解,降低了信息丢失。
三、经验小波变换(empirical wavelet transform, EWT)算法
EWT 算法兼顾 EMD 的自适应性和小波分析的优点,首先根据频谱极值将其划分为多个连续区间,然后在每个频域区间上自适应构造正交小波带通滤波器组并提取信号中的调幅调频成分,最后通过希尔伯特变换获得有物理意义的瞬时频率和幅值,实现特征分离和提取。
不足:EWT 算法的关键在于傅里叶频谱的区段划分,当振动信号处于强噪声背景下或者随机冲击分量较多时,如何自适应地分割频谱,提取感兴趣的频带,仍然需要深入研究。
四、盲源分离(blind source separation, BSS)
指在源信号和传输信道参数缺失时,采取统计方法从观测到的混合信号中近似分离还原出源信号的技术,其目的是通过确定分离过程所需的参数,根据观测信号对源信号进行估计。BSS 在信号恢复方面具有显著优势。
BSS 模型可分为超定、正定、欠定 3 种类型。BSS 算法的经典算法有独立分量分析(independent component analysis, ICA)、非负矩阵分解(non-negative matrix factorization, NMF)和稀疏分量分析( sparse component analysis, SCA)。
1.独立分量分析
ICA 算法除需要源信号具有统计独立特性外,不需要混合信号的其他先验知识,是解决盲源分离问题的有效手段。该方法要求传感器数量大于或者等于源信号数量。由于机械系统的特殊性,传感器在布置位置和数量上常常受到限制,因此,在工程实际中,故障特征提取基本上属于欠定盲源分离范畴。此时惯用的解决方案是通过信号分解方法,将采集信号分解成若干个通道的子信号,再利用ICA 复原原始信号的故障信息,实现盲源分离。
2.非负矩阵分解 (nonnegative matrix factorization,NMF)
把目标矩阵当作 2 个非负矩阵相乘,由于“非负”特性,NMF 分解结果在某种程度更具备实际物理意义[60]。处理盲源分离时,NMF 需要较少的约束,收敛速度快,分解效率高。
不足:在旋转机械的实际工作条件下,采集到的轴承振动信号较为复杂且信噪比低,用传统的 NMF 算法特征提取效果并不佳。为提高盲源分离效果,NMF 必须对源信号和混合矩阵附加稀疏性、非平滑性等条件。
五、共振解调
1.谱峭度(spectral kurtosis,SK)
被定义为能量归一化的 4 阶谱累计量指标。SK 具有对瞬态冲击信号敏感的特性,在被用于提取轴承瞬态冲击成分的应用中表现良好。
不足:SK 对大的随机脉冲非常敏感,但这些脉冲不一定是轴承故障引起的脉冲,且存在噪声干扰,相对较弱的故障分量可能会被能量更强的故障分量或噪声分量淹没,导致通过 SK 确定共振带时失效,从而出现误诊或漏诊。
六、解卷积
基于峭度指标的一类重要的信号处理方法是共振解调,其主要思想是根据峭度指标在频域确定共振频带,为带通滤波参数提供参考。另一类方法是解卷积。在某种意义上,振动信号可被假设为故障引发的周期性冲击信号与机械部件共振响应卷积的结果,因此,解卷积经常被用来还原故障周期性冲击信号。
1.最小熵解卷积(minimum entropy deconvolution,MED)
通过构造长度和系数恰当的 FIR 逆滤波器,并以峭度值最大为滤波器系数更新准则,使得经过逆滤波器滤波后的输出信号能够逼近原始脉冲信号。
不足;局限性在于解卷积是针对单个脉冲或者一组脉冲进行的
2.最大相关峭度解卷积( maximum correlationkurtosis deconvolution, MCKD)
MCKD 通过引入周期先验指标——相关峭度,大幅提升算法对感兴趣周期性脉冲信号的敏感程度。通过迭代优化滤波器系数,使得滤波后的信号相关峭度值达到最大,MCKD 即可实现相应周期性脉冲信号的增强与提取[80]。
不足:MCKD 方法的核心是参数 T、L、M 的选取。参数 T 的选取需要一定的先验知识,在考虑参数之间关联的前提下,快速、自适应地选取最优参数,是提升 MCKD 诊断效果的关键。故障特征周期为非整数时,需要对采集的振动信号进行重采样,以求得整数形式的解卷积周期 T,这种严格的要求和复杂的过程常使诊断效果变差。此外,MCKD 属于迭代算法,其迭代次数会影响最终结果
3.多点最优调整的最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted, MOMEDA) 算法
通过寻找一个最优滤波器,抵消传输路径的影响,提取脉冲信号的特征。它利用时间目标矢量来定义解卷积,从而确定脉冲的位置。该算法无需迭代即可获得最优滤波器,且不需要预先确定故障周期,更具一般性。
不足:MOMEDA 方法中解卷积周期的选取依赖先验知识,如何自适应完成解卷积周期的选取是未来算法改进的重要研究方向。与 MED 相比,MOMEDA 克服了对单个随机脉冲敏感的缺陷。与 MCKD相比,MOMEDA 计算效率更高且输入解卷积周期
可以为非整数,并且不需要增加误差的重采样过程。
但它仍然存在不足:
1)仍然对周期先验的准确性有较高要求,这极大地决定了它性能的好坏;
2)在强噪声干扰下,搜索的周期性脉冲可能是虚假分量;
3)降噪的精度受搜索间隔和滤波器长度大小的影响。
因此,为尽可能地降低降噪间隔,需要对故障周期进行评估和优选,从而提高识别精度。
七、其他方法
奇异值分解(singular value decomposition, SVD)
作为降维和去噪的有效工具,能够反映奇异分量的能量特征
稀疏表示
是一种在强噪声背景下提取故障信息的有效方式。稀疏表示的原理是通过线性组合给定字典中的原子来表示原始信号。所用的原子越少,信号表达方式越精练,就越容易获得信号中隐藏的本质信息。
阶比分析方法
是目前常见被应用于变速条件下旋转机械的故障诊断方法。它的主要思想是基于非平稳原始时域信号进行等角度的重采样构造角域伪平稳信号,以此消除变转速带来的影响。
[1]杨岗,徐五一,邓琴,等.基于振动信号的滚动轴承复合故障诊断研究综述[J].西华大学学报(自然科学版), 2024, 43(1):48.DOI:10.12198/j.issn.1673-159X.5096.